820
Views
3
CrossRef citations to date
0
Altmetric
Review

Evolution of A(H1N1) pdm09 influenza virus masking by glycosylation

& ORCID Icon
Pages 519-526 | Received 18 Jan 2021, Accepted 22 Mar 2021, Published online: 21 May 2021

References

  • Doyon-Plourde P, Fakih I, Tadount F, et al. Impact of influenza vaccination on healthcare utilization—A systematic review. Vaccine. 2019;37(24):3179–3189.
  • Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009;324(5934):1557–1561.
  • Centers for Disease Control and Prevention. 2009 H1N1 Flu: International Situation Update. 2010. Available from: https://www.cdc.gov/h1n1flu/updates/international/
  • WHO recommendations for the post-pandemic period. WHO: world Health Organization; 2009.
  • Gao J, Couzens L, Burke DF, et al. Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies.mBio. 2019;10(2):e00307–19
  • World Health Organization. Recommended composition of influenza virus vaccines for use in the 2017 southern hemisphere influenza season2016.
  • Thyagarajan B, Bloom JD. The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. Elife. 2014 Jul;3(3):e03300.
  • Yang J, Li M, Shen X, et al. Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses. 2013;5(1):352–373.
  • Peitsch C, Klenk HD, Garten W, et al. Activation of influenza A viruses by host proteases from swine airway epithelium[J]. J Virol. 2014;88(1):282–291. .
  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69(1):531–569.
  • Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981;289(5796):366–373.
  • Shinya K, Ebina M, Yamada S, et al. Avian flu: influenza virus receptors in the human airway. Nature. 2006 Mar 23;440(7083):435–6
  • Krueger WS, Gray GC. Swine influenza virus infections in man. Curr Top Microbiol Immunol. 2013;370:201–25
  • Van RK. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet Res. 2007;38(2):243-60.
  • Reneer ZB, Ross TM. H2 influenza viruses: designing vaccines against future H2 pandemics. Biochem Soc Trans. 2019;47(1):251–264.
  • Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127(2):361–373.
  • Kida H, Ito T, Yasuda J, et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol. 1994;75(9):2183–2188. .
  • Ito T, Couceiro JN, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998 Sep;72(9):7367–7373.
  • Chaipan C, Kobasa D, Bertram S, et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009 Apr;83(7):3200–3211.
  • Shi Y, Wu Y, Zhang W, et al. Enabling the ‘host jump’: structuraldeterminants of receptor-binding specificity in influenza A viruses[J]. Nat Rev Microbiol. 2014;12(12):822–831. .
  • Harrison SC. Viral membrane fusion. Nat Struct Mol Biol. 2008 Jul;15(7):690–698.
  • Reed ML, Bridges OA, Seiler P, et al. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J Virol. 2010;84(3):1527–1535.
  • Jiang S, Li R, Du L, et al. Roles of the hemagglutinin of influenza A virus in viral entry and development of antiviral therapeutics and vaccines. Protein Cell. 2010;1(4):342–354.
  • Bullough PA, Hughson FM, Skehel JJ, et al. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43.
  • Durrer P, Durrer P, Galli C, et al. H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. J Biol Chem. 1996 Jun 7;271(23):13417–13421.
  • Plotch SJ, O’Hara B, Morin J, et al. Inhibition of influenza A virus replication by compounds interfering with the fusogenic function of the viral hemagglutinin. J Virol. 1999 Jan;73(1):140–151.
  • Lin B, Qing X, Liao J, et al. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells. 2020 Apr 20;9(4):1022.
  • Schulze IT. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis. 1997 Aug;176(s1):S24–8.
  • Aytay S, Schulze IT. Single amino acid substitutions in the hem- agglutinin can alter the host range and receptor binding properties of H1 strains of influenza A virus. J Virol. 1991;65(6):3022–3028.
  • Gambaryan AS, Marinina VP, Tuzikov AB, et al. Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human in- fluenza A virus grown in MDCK cells and in embryonated eggs. Virology. 1998;247(2):170–177. .
  • Deshpande KL, Fried VA, Ando M, et al. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci U S A. 1987;84(1):36–40.
  • Alberts B, Wilson JH, Hunt T. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008.
  • Rudd PM, Wormald MR, Harvey DJ, et al. Oligosaccharide analysis and molecular modeling of soluble forms of glycoproteins belonging to the Ly-6, scavenger receptor, and immunoglobulin superfamilies expressed in Chinese hamster ovary cells. Glycobiology. 1999 May;9(5):443–458.
  • Roberts PC, Garten W, Klenk HD. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J Virol. 1993;67(6):3048–3060.
  • Ohuchi M, Orlich M, Ohuchi R, et al. Mutations at the cleavage site of the hemagglutinin after the pathogenicity of influenza virus A/chick/Penn/83 (H5N2). Virology. 1989;168(2):274–280. .
  • Reitter JN, Desrosiers RC. Identification of replication-competent strains of simian immunodeficiency virus lacking multiple attachment sites for N-linked carbohydrates in variable regions 1 and 2 of the surface envelope protein. J Virol. 1998 Jul;72(7):5399–5407.
  • Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15(5):211–218.
  • Skehel JJ, Stevens DJ, Daniels RS, et al. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A. 1984;81(6):1779–1783. .
  • Medina RA, Stertz S, Manicassamy B, et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med. 2013;5(187):187ra70. .
  • Das SR, Puigbo P, Hensley SE, et al. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog. 2010;6(11):e1001211.
  • Igarashi M, Ito K, Kida H, et al. Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin. Virology. 2008;376(2):323–329.
  • Wanzeck K, Boyd KL, McCulers JA. Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice[J]. Am J Respir Crit Care Med. 2011;183(6):767–773.
  • Eggink, Gof D, Palese PH, et al. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyper-glycosylation of the globular head domain[J]. J Virol. 2014;88(1):699–704. .
  • Nuñez IA, Ross TM. Human COBRA 2 vaccine contains two major epitopes that are responsible for eliciting neutralizing antibody responses against heterologous clades of viruses. Vaccine. 2020;38(4):830–839.
  • Al Khatib HA, Al Thani AA, Yassine HM. Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Arch Virol. 2018 Nov;163(11):3035–3049.
  • Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56(1):365–394.
  • Sun XJ, Jayaraman A, Maniprasad P, et al. glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918pandemic and seasonal H1N1influenza a vi- ruses[J]. J Virol. 2013;87(15):8756–8766. .
  • O’Donnell CD, Vogel L, Wright A, et al. Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. mBio. 2012 May 29;3(3):e00120–12.
  • Wagner R, Wolff T, Herwig A, et al. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol. 2000 Jul;74(14):6316–6323.
  • Zhang Y, Zhu J, Li Y, et al. Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza A virus in mice. PLoS One. 2013;8(4):e61397. .
  • Tate MD, Job ER, Deng YM, et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses. 2014;6(3):1294–1316.
  • Reading PC, Tate MD, Pickett DL, et al. Glycosylation as a target for recognition of influenza viruses by the innate immune system. Adv Exp Med Biol. 2007;598:279–292.
  • Miller JL, Anders EM. Virus-cell interactions in the induction of type 1 interferon by influenza virus in mouse spleen cells. J Gen Virol. 2003;84(1):193–20210. 1099/vir.0.18590-0. .
  • De Graaf M, Fouchier RA. Role of receptor binding specificity in influenza A virus transmission and pathogenesis [published correction appears in EMBO J. 2014 Apr 16:33(8):823–841.
  • Londrigan SL, Turville SG, Tate MD, et al. N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol. 2011;85(6):2990–3000.
  • Job ER, Deng YM, Barfod KK, et al. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J Immunol. 2013;190(5):2169–2177.
  • Job ER, Deng YM, Barfod KK, et al. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J Immunol. 2013 Mar 1;190(5):2169–2177.
  • Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1).Science. 2009;325:197–201
  • Epperson S, Blanton L, Kniss K, et al. Influenza activity - United States, 2013-14 season and composition of the 2014-15 influenza vaccines. MMWR Morb Mortal Wkly Rep. 2014;63(22):483–490
  • World Health Organization (WHO) Regional Office for Europe. Risk Assessment of the 2015–2016 Influenza Season in the WHO European Region, Week 40/2015 to Week 04/2016. WHO.
  • Hsieh YC, Tsao KC, Huang CT, et al. Clinical characteristics of patients with laboratory-confirmed influenza A(H1N1)pdm09 during the 2013/2014 and 2015/2016 clade 6B/6B.1/6B.2-predominant outbreaks. Sci Rep. 2018;8(1):15636. DOI:10.1038/s41598-018-34077-4
  • Members of the WHO South-East Asia Region Global Influenza Surveillance and Response System. Seasonal influenza surveillance (2009–2017) for pandemic preparedness in the WHO South-East Asia Region. WHO South-East Asia J Public Health 2020;9:55-65
  • Wang CC, Chen JR, Tseng YC, et al. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci USA. 2009;106(43):18137–18142.
  • European Centre for Disease Prevention and Control. Influenza virus characterisation, summary Europe, June 2016. Stockholm: ECDC; 2016.
  • Korsun N, Angelova S, Gregory Vet al. Antigenic and genetic characterization of influenza viruses circulating in Bulgaria during the 2015/2016 season, Infection, Genetics and Evolution,2017;49:241–250
  • Davlin SL, Blanton L, Kniss K, et al. Influenza Activity—United States, 2015–16 Season and Composition of the 2016–17 Influenza Vaccine. 2016. CDC. 567–575
  • Klein EY, Serohijos AW, Choi JM, et al. Influenza A H1N1 pandemic strain evolution--divergence and the potential for antigenic drift variants. PLoS One. 2014;9(4):e93632.
  • Ruggiero T, De Rosa F, Cerutti F, et al. A(H1N1)pdm09 hemagglutinin D222G and D222N variants are frequently harbored by patients requiring extracorporeal membrane oxygenation and advanced respiratory assistance for severe A(H1N1)pdm09 infection. Influenza Other Respir Viruses. 2013 Nov;7(6):1416–26
  • Canche-Pech JR, Conde-Ferraez L, Puerto-Solis M, et al. Ayora-Talavera G. Temporal distribution and genetic variants in influenza A(H1N1)pdm09 virus circulating in Mexico, seasons 2012 and 2013. PLoS One. 2017 Dec 8;12(12):e0189363
  • Koel BF, Mögling R, Chutinimitkul S, et al. Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses. J Virol. 2015;89(7):3763–3775. DOI:10.1128/JVI.02962-14
  • Mohebbi A, Fotouhi F, Jamali A, et al. Molecular epidemiology of the hemagglutinin gene of prevalent influenza virus A/H1N1/pdm09 among patient in Iran. Virus Res. 2019 Jan 2;259:38–45
  • Shope RE, Lewis P. Swine influenza: experimental transmission and pathology. J Exp Med. 1931 Jul 31;54(3):349–359.
  • Smith GJ, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009 Jun 25;459(7250):1122–1125.
  • Yang H, Chang JC, Guo Z, et al. Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins. J Virol. 2014;88(9):4828–4838
  • Gohil D, Kothari S, Shinde P, et al. Genetic Characterization of Influenza A (H1N1) Pandemic 2009 Virus Isolates from Mumbai. Curr Microbiol. 2017 Aug;74(8):899–907.
  • Hashem AM, Azhar EI, Shalhoub S, et al. Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015. Arch Virol. 2018;163(5):1219–1230.
  • Friedman N, Drori Y, Pando R, et al. A(H1N1)pdm09 influenza infection: vaccine inefficiency. Oncotarget. 2017;8(20):32856–32863.
  • Zhao XN, Zhang HJ, Li D, et al. Whole-genome sequencing reveals origin and evolution of influenza A(H1N1)pdm09 viruses in Lincang, China, from 2014 to 2018. PLoS One. 2020;15(6):e0234869. .
  • Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–333.
  • Adamo R, Sonnino S. Impact of glycoscience in fighting Covid-19. Glycoconj J. 2020;37(4):511–512.
  • Sommerstein R, Flatz L, Remy MM, et al. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog. 2015 Nov 20;11(11):e1005276.
  • Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature. 2003 Mar 20;422(6929):307–312.
  • Subbaraman H, Schanz M, Trkola A. Broadly neutralizing antibodies: what is needed to move from a rare event in HIV-1 infection to vaccine efficacy? Retrovirology. 2018 Jul 28;15(1):52.
  • Wei CJ, Boyington JC, Dai K, et al. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci Transl Med. 2010 Mar 24;2(24):24ra21.
  • York IA, Stevens J, Alymova IV. Influenza virus N-linked glycosylation and innate immunity. 2019. [2019 Jan 8]. Published Biosci Rep. 39(1):BSR20171505.
  • Sun S, Wang Q, Zhao F, et al. Glycosylation site alteration in the evolution of influenza A (H1N1) viruses. PloS One. 2011;6(7):e22844.
  • Chang WC, White MR, Moyo P, et al. Lack of the pattern recognition molecule mannose-binding lectin increases susceptibility to influenza A virus infection. BMC Immunol. 2010 Dec;11(1):64.
  • Yu L, Shang S, Tao R, et al. High doses of recombinant mannan-binding lectin inhibit the binding of influenza A(H1N1)pdm09 virus with cells expressing DC-SIGN. APMIS. 2017 Jul;125(7):655–664.
  • Wu BW, Metcalf JP. Editorial: mannose-binding lectin in fighting influenza: promise or peril? J Leukoc Biol. 2014 May;95(5):702–704.
  • Ling MT, Tu W, Han Y, et al. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection. J Infect Dis. 2012 Jan 1;205(1):44–53.
  • Tate MD, Brooks AG, Reading PC. Specific sites of N-linked glycosylation on the hemagglutinin of H1N1 subtype influenza A virus determine sensitivity to inhibitors of the innate immune system and virulence in mice. J Immunol. 2011 Aug 15;187(4):1884–94
  • Paules C, Subbarao K. Influenza. Lancet. 2017 Aug 12;390(10095):697–708
  • Chang D, Zaia J. Why Glycosylation Matters in Building a Better Flu Vaccine.Mol Cell Proteomics. 2019;18(12):2348–2358
  • Chen JR, Liu YM, Tseng YC, et al. Better influenza vaccines: an industry perspective. J Biomed Sci. 2020;27(1):33. Published 2020 Feb 14
  • An Y, Rininger JA, Jarvis DL, et al. Comparative glycomics analysis of influenza Hemagglutinin (H5N1) produced in vaccine relevant cell platforms. J Proteome Res. 2013 Aug 2; 12(8):3707–20.
  • An Y, Parsons LM, Jankowska E, Melnyk D, Joshi M, Cipollo JF. N-Glycosylation of Seasonal Influenza Vaccine Hemagglutinins: Implication for Potency Testing and Immune Processing. J Virol. 2019;93(2):e01693–18.
  • Alymova IV, Kodihalli S, Govorkova EA, et al. Immunogenicity and protective efficacy in mice of influenza B virus vaccines grown in mammalian cells or embryonated chicken eggs. J Virol. 1998;72(5):4472–4477.
  • Shin D, Park KJ, Lee H, et al. Comparison of immunogenicity of cell-and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines. Virus Res. 2015 Jun 2;204:40–6
  • Zost SJ, Parkhouse K, Gumina ME, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci USA. 2017 Nov 21; 114(47):12578–12583
  • Hector S Izurieta, Yoganand Chillarige, Jeffrey Kelman, et al, Relative Effectiveness of Cell-Cultured and Egg-Based Influenza Vaccines Among Elderly Persons in the United States, 2017–2018. J Infect Dis. 2019 Sep 13;220(8):1255–1264
  • Saito T, Nakaya Y, Suzuki T, et al. Antigenic alteration of influenza B virus associated with loss of a glycosylation site due to host-cell adaptation. J Med Virol. 2004 Oct;74(2):336–43
  • Julia Romanova, Dietmar Katinger, Boris Ferko, et al. Distinct host range of influenza h3n2 virus isolates in vero and mdck cells is determined by cell specific glycosylation pattern, Virology. 2003 Mar 1;307(1):90–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.