1,105
Views
7
CrossRef citations to date
0
Altmetric
Review

Carbohydrate-containing nanoparticles as vaccine adjuvants

, , ORCID Icon &
Pages 797-810 | Received 13 Mar 2021, Accepted 03 Jun 2021, Published online: 15 Jun 2021

References

  • Bergmann-Leitner ES, Leitner WW. Adjuvants in the driver’s seat: how magnitude, type, fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators. Vaccines (Basel). 2014 Apr 10;2(2):252–296.
  • Lin Y, Wang X, Huang X, et al. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines. 2017;16(9):895–906.
  • O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng. 2001 Oct 15;18(3):69–85.
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004 Oct;82(5):488–496.
  • Cordeiro AS, Alonso MJ, de la Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol Adv. 2015;33(6):1279–1293.
  • Bashiri S, Koirala P, Toth I, et al. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics. 2020 Oct 14;12(10):965.
  • Barclay T, Petrovsky N. In: Skwarczynski M, Toth I, editors. Micro and Nanotechnology in Vaccine Development. New York (NY): William Andrew Publishing; 2017. Chapter 7, Vaccine Adjuvant Nanotechnologies; p. 127–147
  • Gheibi Hayat SM, Darroudi M. Nanovaccine: a novel approach in immunization. J Cell Physiol. 2019 Aug;234(8):12530–12536.
  • Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019 Mar;18(3):269–280.
  • Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014 Jan 9;32(3):327–337.
  • Boons GJ. Liposomes modified by carbohydrate ligands can target B cells for the treatment of B-cell lymphomas. Expert Rev Vaccines. 2010 Nov;9(11):1251–1256.
  • Petrovsky N, Cooper PD. Carbohydrate-based immune adjuvants. Expert Rev Vaccines. 2011 Apr;10(4):523–537.
  • Li P, Wang F. Polysaccharides: candidates of promising vaccine adjuvants. Drug Discov Ther. 2015 Apr;9(2):88–93.
  • Hu J, Qiu L, Wang X, et al. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov. 2015 Oct;10(10):1133–1144.
  • McGeary RP, Olive C, Toth I. Lipid and carbohydrate based adjuvant/carriers in immunology. J Pept Sci. 2003 Jul;9(7):405–418.
  • Pifferi C, Fuentes R, Fernández-Tejada A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem. 2021 Jan 25;1–20. DOI:10.1038/s41570-020-00244-3.
  • Huang YL, Wu CY. Carbohydrate-based vaccines: challenges and opportunities. Expert Rev Vaccines. 2010 Nov;9(11):1257–1274.
  • Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015 Feb;32:21–27.
  • Geijtenbeek TB, Gringhuis SI. C-type lectin receptors in the control of T helper cell differentiation. Nat Rev Immunol. 2016 Jul;16(7):433–448.
  • Lugade AA, Bharali DJ, Pradhan V, et al. Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity. Nanomedicine. 2013 Oct;9(7):923–934.
  • Jin JW, Tang SQ, Rong MZ, et al. Synergistic effect of dual targeting vaccine adjuvant with aminated beta-glucan and CpG-oligodeoxynucleotides for both humoral and cellular immune responses. Acta Biomater. 2018 Sep 15;78:211–223.
  • Bartheldyova E, Turanek Knotigova P, Zachova K, et al. N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr Polym. 2019 Mar 1;207:521–532.
  • Skene CD, Sutton P. Saponin-adjuvanted particulate vaccines for clinical use. Methods. 2006 Sep;40(1):53–59.
  • Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016 Oct;42(10):1417–1426.
  • Elieh-Ali-Komi D, Hamblin MR. Chitin and Chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res. 2016 Mar;4(3):411–427.
  • Marradi M, Di Gianvincenzo P, Enriquez-Navas PM, et al. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol. 2011 Jul 29;410(5):798–810.
  • Lebre F, Pedroso de Lima MC, Lavelle EC, et al. Mechanistic study of the adjuvant effect of chitosan-aluminum nanoparticles. Int J Pharm. 2018 Dec 1;552(1–2):7–15.
  • Moran HBT, Turley JL, Andersson M, et al. Immunomodulatory properties of chitosan polymers. Biomaterials. 2018 Nov;184:1–9.
  • Carroll EC, Jin L, Mori A, et al. The vaccine adjuvant Chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of Type I interferons. Immunity. 2016 Mar 15;44(3):597–608.
  • Bueter CL, Lee CK, Rathinam VA, et al. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J Biol Chem. 2011 Oct 14;286(41):35447–35455.
  • Cui Z, Mumper RJ. Chitosan-based nanoparticles for topical genetic immunization. J Control Release. 2001 Aug 10;75(3):409–419.
  • Pawar D, Jaganathan KS. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: enhancement of mucosal and systemic immune response. Drug Deliv. 2016;23(1):185–194.
  • Kaloti M, Bohidar HB. Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions. Colloids Surf B Biointerfaces. 2010 Nov 1;81(1):165–173.
  • Ghalavand M, Saadati M, Ahmadi A, et al. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid. Bratisl Lek Listy. 2018;119(2):71–74.
  • Garcia-Vello P, Speciale I, Chiodo F, et al. Carbohydrate-based adjuvants. Drug Discov Today Technol. 2020 Dec;35-36:57–68.
  • Sharma S, Mukkur TK, Benson HA, et al. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci. 2012 Jan;101(1):233–244.
  • Wang YQ, Fan QZ, Liu Y, et al. Improving adjuvanticity of quaternized chitosan-based microgels for H5N1 split vaccine by tailoring the particle properties to achieve antigen dose sparing effect. Int J Pharm. 2016 Dec 30;515(1–2):84–93.
  • Belalia R, Grelier S, Benaissa M, et al. New bioactive biomaterials based on quaternized chitosan. J Agric Food Chem. 2008 Mar 12;56(5):1582–1588.
  • Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009 May;20(5):1057–1079.
  • Chase C, Kaushik RS. Mucosal immune system of cattle: all immune responses begin here. Vet Clin North Am Large Anim Pract. 2019 Nov;35(3):431–451.
  • Zhang S, Huang S, Lu L, et al. Curdlan sulfate-O-linked quaternized chitosan nanoparticles: potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination. Int J Nanomedicine. 2018;13:2377–2394.
  • Trapani A, Sitterberg J, Bakowsky U, et al. The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int J Pharm. 2009 Jun 22;375(1–2):97–106.
  • Jesus S, Soares E, Borchard G, et al. Adjuvant activity of poly-ε-caprolactone/Chitosan nanoparticles characterized by mast cell activation and IFN-γ and IL-17 production. Mol Pharm. 2018 Jan 2;15(1):72–82.
  • Rose F, Wern JE, Gavins F, et al. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release. 2018 Feb 10;271:88–97.
  • Tsoni SV, Brown GD. Beta-Glucans and dectin-1. Ann N Y Acad Sci. 2008 Nov;1143(1):45–60.
  • Hwang J, Lee K, Gilad AA, et al. Synthesis of beta-glucan nanoparticles for the delivery of single strand DNA. Biotechnol Bioprocess Eng. 2018;23(2):144–149.
  • Zhang M, Kim JA, Huang AY. Optimizing tumor microenvironment for cancer immunotherapy: beta-glucan-based nanoparticles. Front Immunol. 2018;9:341.
  • Kobiyama K, Temizoz B, Kanuma T, et al. Species-dependent role of type I IFNs and IL-12 in the CTL response induced by humanized CpG complexed with beta-glucan. Eur J Immunol. 2016 May;46(5):1142–1151.
  • Brown GD, Taylor PR, Reid DM, et al. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 2002 Aug 5;196(3):407–412.
  • Khan NS, Kasperkovitz PV, Timmons AK, et al. Dectin-1 controls TLR9 trafficking to phagosomes containing beta-1,3 glucan. J Immunol. 2016 Mar 1;196(5):2249–2261.
  • Miyamoto N, Mochizuki S, Fujii S, et al. Adjuvant Activity Enhanced by Cross-Linked CpG-Oligonucleotides in beta-Glucan Nanogel and Its Antitumor Effect. Bioconjug Chem. 2017 Feb 15;28(2):565–573.
  • Lee DY, Nurunnabi M, Kang SH, et al. Oral gavage delivery of PR8 antigen with beta-glucan-conjugated GRGDS carrier to enhance M-cell targeting ability and induce immunity. Biomacromolecules. 2017 Apr 10;18(4):1172–1179.
  • Evelyn Piyachat R, Evelyn Roopngam P. Effect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model. Nanomedicine. 2018;5(3):144–151.
  • Gonzalez PS, O’Prey J, Cardaci S, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018 Nov;563(7733):719–723.
  • Zhang D, Chia C, Jiao X, et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med. 2017 Sep;23(9):1036–1045.
  • Robinson MJ, Sancho D, Slack EC, et al. Myeloid C-type lectins in innate immunity. Nat Immunol. 2006 Dec;7(12):1258–1265.
  • Ip WK, Takahashi K, Ezekowitz RA, et al. Mannose-binding lectin and innate immunity. Immunol Rev. 2009 Jul;230(1):9–21.
  • Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009 Jul;9(7):465–479.
  • Kaur A, Jain S, Tiwary AK. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm. 2008 Mar;58(1):61–74.
  • Kramer S, Langhanki J, Krumb M, et al. HPMA-based nanocarriers for effective immune system stimulation. Macromol Biosci. 2019 Jun;19(6):e1800481.
  • Li Z, Xiong F, He J, et al. Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: effect of surface modification with chitosan and mannan. Eur J Pharm Biopharm. 2016 Dec;109:24–34.
  • Doores KJ, Kong L, Krumm SA, et al. Two classes of broadly neutralizing antibodies within a single lineage directed to the high-mannose patch of HIV envelope. J Virol. 2015 Jan 15;89(2):1105–1118.
  • Shan M, Klasse PJ, Banerjee K, et al. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog. 2007 Nov;3(11):e169.
  • Daniels CN, Saunders KO. Antibody responses to the HIV-1 envelope high mannose patch. Adv Immunol. 2019;143:11–73.
  • Toda S, Ishii N, Okada E, et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-gamma antibody. Immunology. 1997 Sep;92(1):111–117.
  • Glass JJ, Kent SJ, De Rose R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev Vaccines. 2016 Jun;15(6):719–729.
  • Kensil CR, Wu JY, Soltysik S. Structural and immunological characterization of the vaccine adjuvant QS-21. Pharm Biotechnol. 1995;6:525–541.
  • Cox JC, Sjölander A, Barr IG. ISCOMs and other saponin based adjuvants. Adv Drug Deliv Rev. 1998 Jul 6;32(3):247–271.
  • Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018 Oct;39:14–21.
  • Laurens MB. RTS,S/AS01 vaccine (Mosquirix™): an overview. Hum Vaccin Immunother. 2020 Mar 3;16(3):480–489.
  • Press JB, Reynolds RC, May RD, et al. In: Atta-ur-Rahman, editor. Studies in Natural Products Chemistry: Structure—function relationship of immunostimulating Saponins. Amsterdam (Netherlands): Elsevier Academic Press; 2000. p. 131–174
  • Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem. 2014 Nov 28;12(44):8803–8822.
  • Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs. 1998 Sep;7(9):1475–1482.
  • de Groot C, Müller-Goymann CC. Saponin interactions with model membrane systems - Langmuir monolayer studies, hemolysis and formation of ISCOMs. Planta Med. 2016 Dec;82(18):1496–1512.
  • Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009 Jul 16;27(33):4388–4401.
  • Coccia M, Collignon C, Hervé C, et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines. 2017;2(1):25.
  • Shah RA, Limmer AL, Nwannunu CE, et al. Shingrix for Herpes Zoster: a review. Skin Therapy Lett. 2019 Jul;24(4):5–7.
  • Sjölander A, Drane D, Maraskovsky E, et al. Immune responses to ISCOM formulations in animal and primate models. Vaccine. 2001 Mar 21;19(17–19):2661–2665.
  • Sanders MT, Brown LE, Deliyannis G, et al. ISCOM-based vaccines: the second decade. Immunol Cell Biol. 2005 Apr;83(2):119–128.
  • Lövgren Bengtsson K, Morein B, Osterhaus AD. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines. 2011 Apr;10(4):401–403.
  • Klein O, Davis ID, McArthur GA, et al. Low-dose cyclophosphamide enhances antigen-specific CD4(+) T cell responses to NY-ESO-1/ISCOMATRIX™ vaccine in patients with advanced melanoma. Cancer Immunol Immunother. 2015 Apr;64(4):507–518.
  • Pedersen GK, Madhun AS, Breakwell L, et al. T-helper 1 cells elicited by H5N1 vaccination predict seroprotection. J Infect Dis. 2012 Jul 15;206(2):158–166.
  • Pushko P, Tretyakova I. Influenza Virus Like Particles (VLPs): opportunities for H7N9 Vaccine Development. Viruses. 2020 May 8;12(5):518.
  • Venkatraman N, Anagnostou N, Bliss C, et al. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™. Vaccine. 2017 Oct 27;35(45):6208–6217.
  • Dong Y, Dai T, Wei Y, et al. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020 Oct 13;5(1):237.
  • Keech C, Albert G, Cho I, et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med. 2020 Sep 2;383(24):2320–2332.
  • Mahase E. Covid-19: novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ. 2021;372:n296.
  • Novavax confirms high levels of efficacy against original and variant COVID-19 strains in United Kingdom and South Africa trials 2021 [cited 2021 May 04]. Available from: https://ir.novavax.com/node/15661/pdf
  • Cibulski SP, Mourglia-Ettlin G, Teixeira TF, et al. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine. 2016 Feb 24;34(9):1162–1171.
  • Cibulski SP, Rivera-Patron M, Mourglia-Ettlin G, et al. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci Rep. 2018 Sep 11;8(1):13582.
  • Turmagambetova AS, Alexyuk PG, Bogoyavlenskiy AP, et al. Adjuvant activity of saponins from Kazakhstani plants on the immune responses to subunit influenza vaccine. Arch Virol. 2017 Dec;162(12):3817–3826.
  • Song X, Zang L, Hu S. Amplified immune response by ginsenoside-based nanoparticles (ginsomes). Vaccine. 2009 Apr 14;27(17):2306–2311.
  • Tong YN, Yang LY, Yang Y, et al. An immunopotentiator, ophiopogonin D, encapsulated in a nanoemulsion as a robust adjuvant to improve vaccine efficacy. Acta Biomater. 2018 Sep;1(77):255–267.
  • Zhao JH, Zhang QB, Liu B, et al. Enhanced immunization via dissolving microneedle array-based delivery system incorporating subunit vaccine and saponin adjuvant. Int J Nanomedicine. 2017;12:4763–4772.
  • Marciani DJ. Elucidating the mechanisms of action of Saponin-derived adjuvants. Trends Pharmacol Sci. 2018 Jun;39(6):573–585.
  • Rhodes J, Chen H, Hall SR, et al. Therapeutic potentiation of the immune system by costimulatory Schiff-base-forming drugs. Nature. 1995 Sep 7;377(6544):71–75.
  • Soltysik S, Wu JY, Recchia J, et al. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine. 1995;13(15):1403–1410.
  • Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224.
  • Wang T, Zou M, Jiang H, et al. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci. 2011 Dec 18;44(5):653–659.
  • Wusiman A, Xu S, Ni H, et al. Immunomodulatory effects of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Carbohydr Polym. 2019 May;1(211):217–226.
  • Dhakal S, Lu F, Ghimire S, et al. Corn-derived alpha-D-glucan nanoparticles as adjuvant for intramuscular and intranasal immunization in pigs. Nanomedicine. 2019 Feb;16:226–235.
  • Cummings RD. Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj J. 2019 Aug;36(4):241–257.
  • Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal. 2009 Nov;21(11):1548–1558.
  • Villar RF, Patel J, Weaver GC, et al. Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Sci Rep. 2016 Oct;31(6):36298.
  • Hakomori S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj J. 2004;21(3–4):125–137.
  • Xia Y, Wu J, Wei W, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater. 2018 Feb;17(2):187–194.
  • Desai KG. Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances. Crit Rev Ther Drug Carrier Syst. 2016;33(2):107–158.
  • Ratih DN, Sari NI, Santosa P, et al. Time-dependent effect of chitosan nanoparticles as final irrigation on the apical sealing ability and push-out bond strength of root canal obturation. Int J Dent. 2020;2020:8887593.
  • Del Carpio-Perochena A, Bramante CM, Duarte MA, et al. Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod. 2015 Aug;40(3):195–201.
  • Holmgren J, Svennerholm AM. Vaccines against mucosal infections. Curr Opin Immunol. 2012 Jun;24(3):343–353.
  • Kumar S, Anselmo AC, Banerjee A, et al. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015 Dec 28;220(Pt A):141–148.
  • Connolly A, Gagnon E. Electrostatic interactions: from immune receptor assembly to signaling. Immunol Rev. 2019 Sep;291(1):26–43.
  • Vogel FR, Sarver N. Nucleic acid vaccines. Clin Microbiol Rev. 1995 Jul;8(3):406–410.
  • Alfagih IM, Aldosari B, AlQuadeib B, et al. Nanoparticles as adjuvants and nanodelivery systems for mRNA-based vaccines. Pharmaceutics. 2020 Dec 30;13(1):45.
  • Jakab L. [Biological role of heterogeneous glycoprotein structures]. Orv Hetil. 2016 Jul;157(30):1185–1192.
  • Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell. 2020 Apr 16;181(2):281–292.e6.
  • Schulze IT. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis. 1997 Aug;176(Suppl 1):S24–8.
  • Tate MD, Job ER, Deng YM, et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses. 2014 Mar 14;6(3):1294–1316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.