256
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Construction of a multiepitope vaccine candidate against Fasciola hepatica: an in silico design using various immunogenic excretory/secretory antigens

ORCID Icon, ORCID Icon, , &
Pages 993-1006 | Received 06 May 2021, Accepted 18 Oct 2021, Published online: 01 Nov 2021

References

  • Karahocagil MK, Akdeniz H, Sunnetcioglu M, et al. A familial outbreak of fascioliasis in Eastern Anatolia: a report with review of literature. Acta Trop. 2011;118(3):177–183.
  • Despommier DD, Griffin DO, Gwadz RW, et al. Fasciola hepatica. Parasitic Diseases. 6th edition. New York: Parasites Without Borders. 2017: 427–434. http://www.apinfectologia.com/wp-content/uploads/2018/04/ParasiticDiseases6thEdition2ndPLR3-24-2017wCover.pdf.
  • Silvane L, Celias DP, Romagnoli PA, et al. A vaccine based on Kunitz-Type molecule confers protection against Fasciola hepatica challenge by inducing IFN-γ and antibody immune responses through IL-17A production. Front Immunol. 2020;11:1–13.
  • Figueroa-Santiago O, Espino AM. Fasciola hepatica fatty acid binding protein induces the alternative activation of human macrophages. Infect Immun. 2014;82(12):5005–5012.
  • Ryan S, Shiels J, and Taggart CC, et al. Fasciola hepatica-derived molecules as regulators of the host immune response. Front Immunol. 2020;11:1–9 .•• This important review provides information about Fasciola hepatica E/S antigens and their immunomodulator features.
  • Buffoni L, Zafra R, Pérez-Écija A, et al. Immune response of goats immunised with glutathione S-transferase and experimentally challenged with Fasciola hepatica. Parasitol Int. 2010. doi:10.1016/j.parint.2009.12.005.
  • Casanueva P, Hillyer GV, Ramajo V, et al. Immunoprophylaxis against Fasciola hepatica in rabbits using a recombinant Fh15 fatty acid-binding protein. J Parasitol. 2001. doi:10.1645/0022-3395(2001)087[0697:IAFHIR]2.0.CO;2.
  • Jayaraj R, Piedrafita D, Dynon K, et al. Liver fluke vaccines: vaccination against Fasciolosis by a multivalent vaccine of recombinant stage-specific antigens. Procedia Vaccinol. 2010;2(1):82–85.
  • Ranasinghe SL, Fischer K, Zhang W, et al. Cloning and characterization of two potent Kunitz type protease inhibitors from echinococcus granulosus. PLoS Negl Trop Dis. [Internet]. 2015 [cited 2021 Jul 17];912:e0004268.
  • Sl RANASINGHE, Fischer K, Gn GOBERT, et al. A novel coagulation inhibitor from Schistosoma japonicum. Parasitology. [Internet]. 2015 [ cited 2021 Jul 17];142. https://pubmed.ncbi.nlm.nih.gov/26463744
  • Hawdon JM, Datu B, Crowell M. Molecular cloning of a novel multidomain Kunitz-type proteinase inhibitor from the hookworm Ancylostoma caninum [Internet]. J. Parasitol. 2003 [cited 2021 Jul 17];89(2):402–407. https://bioone.org/journals/journal-of-parasitology/volume-89/issue-2/0022-3395(2003)089[0402:MCOANM]2.0.CO;2/Molecular-Cloning-of-a-Novel-Multidomain-Kunitz-Type-Proteinase-Inhibitor/10.1645/0022-3395(2003)089[0402:MCOANM]2.0.CO;2.short
  • Cwiklinski K, Donnelly S, Drysdale O, et al. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Adv Parasitol. 2019;104:113–164.
  • Ranasinghe S, McManus DP. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev Comp Immunol. 2013;39(3):219–227.
  • Smith D, Tikhonova IG, Jewhurst HL, et al. Unexpected activity of a novel Kunitz-type inhibitor: Inhibition Of Cysteine Proteases But Not Serine ProteaseS *. J Biol Chem. [Internet]. 2016 [cited 2021 Jul 12];291:19220–19234.
  • Golden O, Flynn RJ, Read C, et al. Protection of cattle against a natural infection of Fasciola hepatica by vaccination with recombinant cathepsin L1 (rFhCL1) [Internet]. Vaccine. 2010 [cited 2021 Jul 16];28(34):5551–5557. Available from:: https://reader.elsevier.com/reader/sd/pii/S0264410X10008509?token=4E60C69761EA2597C8CB185708EF37BE8991768BE6132E5C75E5C3BE55489E27E7A8F5B1DD59D730498FA3038B8D06F8&originRegion=eu-west-1&originCreation=20210716065522
  • Donnelly S, O’Neill SM, Stack CM, et al. Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J Biol Chem. 2010;285(5):3383–3392.
  • McNeilly TN, Nisbet AJ. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence. Parasite. [Internet]. 2014 [cited 2021 Jul 12];21:51. pmc/articles/PMC4189095.
  • Kalita J, Padhi AK, Tripathi T. Designing a vaccine for fascioliasis using immunogenic 24 kDa mu-class glutathione s-transferase. Infect Genet Evol. 2020;83:104352.
  • Sexton JL, Milner AR, Panaccio M, et al. Glutathione S-transferase. Novel vaccine against Fasciola hepatica infection in sheep. J Immunol [Internet]. 1990 [cited 2021 Jul 13];145:3905–3910. http://www.ncbi.nlm.nih.gov/pubmed/1978849
  • Capron A, Capron M, Riveau G. Vaccine development against schistosomiasis from concepts to clinical trials. Br Med Bull. [Internet]. 2002 cited 2021 Jul 13;62(1):139–148. https://www.karger.com/Article/Abstract/53656
  • Diemert DJ, Freire J, Valente V, et al. Safety and immunogenicity of the Na-GST-1 hookworm vaccine in Brazilian and American adults. PLoS Negl Trop Dis. 2017;11(5):e0005574.
  • Thivierge K, Cotton S, Schaefer DA, et al. Cathelicidin-like Helminth Defence Molecules (HDMs): absence of cytotoxic, anti-microbial and anti-protozoan activities imply a specific adaptation to immune modulation. PLoS Negl Trop Dis. 2013;7(7):e2307.
  • Scarcella S, Lamenza P, Virkel G, et al. Expression differential of microsomal and cytosolic glutathione-S- transferases in Fasciola hepatica resistant at triclabendazole. Mol Biochem Parasitol. 2012;181(1):37–39.
  • Frigerio S, Da Costa V, Costa M, et al. Eosinophils control liver damage by modulating immune responses against Fasciola hepatica. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.579801.
  • Moreau E, Chauvin A. Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechnol. 2010;2010:1–9.
  • Cervi L, Serradell M, Guasconi L, et al. New insights into the modulation of immune response by Fasciola hepatica excretory-secretory products. Curr Immunol Rev. 2009;5(4):277–284.
  • Negahdaripour M, Nezafat N, Eslami M, et al. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect Genet Evol. 2018;58:96–109.
  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, et al. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J. Biomed. Inform. 2015;53:405–414.
  • Keshavarzi Arshadi A, Webb J, Salem M, et al. Artificial intelligence for COVID-19 drug discovery and vaccine development. Front. Artif Intell. 2020; 3:65.
  • Malone B, Simovski B, Moliné C, et al. Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs. Sci Rep. 2020;10(1):1–14.
  • Chen J, Liu H, Yang J, et al. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids. 2007;33(3):423–428.
  • Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Genet. 2006;65(1):40–48.
  • Yao B, Zheng D, and Liang S, et al. SVMTriP: a method to predict B-Cell linear antigenic epitopes. Methods Mol Biol. 2020;2131: 299–307 .
  • Ea E, Jv H, Ds P, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. [Internet]. 1985 [cited 2021 Jul 13];55:836–839. 3:
  • Jaydari A, Nazifi N, Forouharmehr A. Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Hum Immunol. 2020;81(10–11):596–605.
  • Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. Proteomics Protoc Handb 2005; 571–607
  • Dimitrov I, Bangov I, Flower DR, et al. AllerTOP v.2 - A server for in silico prediction of allergens. J Mol Model. 2014;20(6). DOI:10.1007/s00894-014-2278-5.
  • Dimitrov I, Naneva L, Doytchinova I, et al. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014;30(6):846–851.
  • Magnan CN, Zeller M, Kayala MA, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics. 2010;26(23):2936–2943.
  • Garnier J, Gibrat JF, and Robson B. [32] GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266:540–553 .
  • Buchan DWA, Jones DT. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019;47(W1):W402–W407.
  • Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–738.
  • Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013. doi:10.1093/nar/gkt458
  • Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993. doi:10.1002/pro.5560020916
  • Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27(1):293–315.
  • Ponomarenko J, Bui HH, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9(1). doi:10.1186/1471-2105-9-514.
  • Dombkowski AA. Disulfide by DesignTM: a computational method for the rational design of disulfide bonds in proteins. Bioinformatics. 2003;19(14):1852–1853.
  • Desta IT, Porter KA, Xia B, et al. Performance and its limits in rigid body protein-protein docking. Structure. 2020;28(9):1071–1081.e3.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.
  • Atanasova M, Patronov A, Dimitrov I, et al. EpiDOCK: a molecular docking-based tool for MHC class II binding prediction. Protein Eng Des Sel. 2013;26(10):631–634.
  • Molina-Hernández V, Mulcahy G, Pérez J, et al. Fasciola hepatica vaccine: we may not be there yet but we’re on the right road. Vet Parasitol. 2015;208(1–2):101–111. [Internet].
  • Kelley JM, Elliott TP, Beddoe T, et al. Current threat of Triclabendazole resistance in Fasciola hepatica. Trends Parasitol [Internet]. 2016;32(6):458–469.
  • Buffoni L, Garza-Cuartero L, Pérez-Caballero R, et al. Identification of protective peptides of Fasciola hepatica-derived cathepsin L1 (FhCL1) in vaccinated sheep by a linear B-cell epitope mapping approach. Parasites Vectors. 2020;13(1):1–13. [Internet].
  • Can H, Erkunt Alak S, Köseoğlu AE, et al. Do Toxoplasma gondii apicoplast proteins have antigenic potential? An in silico study. Comput Biol Chem. 2020;84:107158.
  • Shey RA, Ghogomu SM, and Esoh KK, et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep. 2019;9(1):1–18 .
  • Aguayo V, Valdés Fernandez BN, Rodríguez-Valentín M, et al. Fasciola hepatica GST downregulates NF-κB pathway effectors and inflammatory cytokines while promoting survival in a mouse septic shock model. Sci Rep. 2019;9(1). doi:10.1038/s41598-018-37652-x.
  • Falcón CR, Masih D, Gatti G, et al. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses. PLoS One. 2014;9(12):e114505.
  • Dalton JP, Robinson MW, Mulcahy G, et al. Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol. 2013;195(3–4):272–285. [Internet].
  • Tanaka A, Allam VSRR, Simpson J, et al. The parasitic 68-mer peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma. J Allergy Clin Immunol. 2018;141(6):2316–2319.
  • Mattar MA, El-Toukhy HM. Evaluation of circulating anti-Fasciola IgA antibodies by ELISA technique using two different Fasciola antigens. J Egypt Soc Parasitol. [Internet]. 2004 [cited 2021 Jul 18];34:739–749. https://europepmc.org/article/med/15587303
  • Carnevale S, Rodríguez MI, Santillán G, et al. Immunodiagnosis of human fascioliasis by an enzyme-linked immunosorbent assay (ELISA) and a micro-ELISA. Clin Diagn Lab Immunol. [Internet]. 2001 [cited 2021 Jul 18];8:174–177. 1:
  • Garza-Cuartero L, Geurden T, Mahan SM, et al. Antibody recognition of cathepsin L1-derived peptides in Fasciola hepatica-infected and/or vaccinated cattle and identification of protective linear B-cell epitopes. Vaccine. 2018;36(7):958–968.
  • Caoili SE. B-cell epitope prediction for peptide-based vaccine design: towards a paradigm of biological outcomes for global health. Immunome Res. 2011;7(2). doi:10.4172/1745-7580.1000044
  • Singh J, Malik D, Raina A. Immuno-informatics approach for B-cell and T-cell epitope based peptide vaccine design against novel COVID-19 virus. Vaccine. [Internet]. 2021 cited 2021 Jul 14;39(7):1087–1095.
  • Ali M, Pandey RK, Khatoon N, et al. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-09199-w.
  • Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017. doi:10.1038/s41598-017-08842-w
  • Arai R, Ueda H, Kitayama A, et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 2001;14(8):529–532.
  • Ahmed ME, Hassan OA, Khalifa AKA, et al. Echinococcosis in Tambool, Central Sudan: a knowledge, attitude and practice (KAP) study. Int Health. 2018;10:490–494.
  • Nourmohammadi H, Javanmardi E, and Shams M, et al. Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens. Informatics Med Unlocked [Internet] . 2020;21:100464.•• This important research article explains about in silico vaccine development against Echinococcus
  • Meza B, Ascencio F, Sierra-Beltrán AP, et al. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect Genet Evol [Internet]. 2017 [cited 2021 Jul 17;49:309–317.
  • Nezafat N, Karimi Z, Eslami M, et al. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem [Internet]. 2016 [cited 2021 Jul 17];62:82–95.
  • Bergmann CC, Yao Q, Ho CK, et al. Flanking residues alter antigenicity and immunogenicity of multi-unit CTL epitopes. J Immunol [Internet]. 1996 [cited 2021 Jul 17];157:3242–3249. Available from: http://www.ncbi.nlm.nih.gov/pubmed8871618
  • Meza B, Ascencio F, and Sierra-Beltrán AP, et al. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect Genet Evol. 2017;49:309–317 . 10.1016/j.meegid.2017.02.007.
  • Shey RA, Ghogomu SM, Shintouo CM, et al. Computational design and preliminary serological analysis of a novel multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Pathogens. 2021;10(2):99.
  • Rodríguez E, Noya V, Cervi L, et al. Glycans from Fasciola hepatica modulate the host immune response and TLR-induced maturation of dendritic cells. PLoS Negl Trop Dis. 2015;9(12):e0004234.
  • Ashour DS. Toll-like receptor signaling in parasitic infections. Expert Rev Clin Immunol. 2015;11(6):771–780.
  • Kayhan B, Kurtoglu EL, Taskapan H, et al. HLA-A, -B, -DRB1 Allele and Haplotype frequencies and comparison with blood group antigens in dialysis patients in the East Anatolia region of Turkey. Transplant Proc [Internet]. 2013;45:2123–2128. (6):
  • Evseeva I, Spurkland A, Thorsby E, et al. HLA profile of three ethnic groups living in the North-Western region of Russia. Tissue Antigens. 2002;59(1):38–43.
  • Can H, Köseoğlu AE, and Erkunt Alak S, et al. In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-79645-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.