8,632
Views
6
CrossRef citations to date
0
Altmetric
Review

Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 173-184 | Received 27 Aug 2021, Accepted 26 Nov 2021, Published online: 19 Dec 2021

References

  • Cameron F, Whiteside G, Perry C. Ipilimumab: first global approval. Drugs. 2011;71(8):1093–1104.
  • Poole RM. Pembrolizumab: first global approval. Drugs. 2014;74(16):1973–1981.
  • Deeks ED, Deeks ED. Nivolumab: a review of its use in patients with malignant melanoma. Drugs. 2014;74(11):1233–1239.
  • Markham A, Duggan S. Cemiplimab: first global approval. Drugs. 2018;78(17):1841–1846.
  • Markham A. Dostarlimab: first approval. Drugs. 2021;81(10):1213–1219.
  • Markham A. Atezolizumab: first global approval. Drugs. 2016;76(12):1227–1232.
  • Kim ES. Avelumab: first global approval. Drugs. 2017;77(8):929–937.
  • Syed YY. Durvalumab: first global approval. Drugs. 2017;77(12):1369–1376.
  • Alexander W. The checkpoint immunotherapy revolution: What started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge. Pharm Ther. 2016;41:185–191.
  • Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–581.
  • Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–2199.
  • Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2(10):1346–1353.
  • Läubli H, Balmelli C, Kaufmann L, et al. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. J Immunother Cancer. 2018;6(1):1–10.
  • Gunawan F, George E, Roberts A, et al. Combination immune checkpoint inhibitor therapy nivolumab and ipilimumab associated with multiple endocrinopathies. 2018;Endocrinol. Diabetes Metab. Case Reports. 2018:17–146.
  • Wetterstrand KA. DNA sequencing costs: data from the NHGRI large-scale Genome Sequencing Program (GSP) [cited 2020 Dec 10]. Available at: www.genome.gov/sequencingcostsdata
  • Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128.
  • Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–211.
  • Morris LGT, Riaz N, Desrichard A, et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 2016;7(9):10051–10063.
  • McGranahan N, Furness AJS, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–1469.
  • Rizvi H, Sanchez-Vega F, La K, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–641.
  • Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–206.
  • Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–2501.
  • Pitt JM, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–1269.
  • O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–167.
  • Richard G, De Groot AS, Steinberg GD, et al. Multi-step screening of neoantigens’ HLA- and TCR-interfaces improves prediction of survival. Sci Rep. 2021;11(1):9983.
  • Ott PA, Hu Z, Keskin DB, et al., An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662): 217–221.
  • Sahin U, Derhovanessian E, Miller M, et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662): 222–226.
  • Keskin DB, Anandappa AJ, Sun J, et al., Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738): 234–239.
  • Hu Z, Leet DE, Allesøe RL, et al., Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med. 2021;27(3): 515–525.
  • Laumont CM, Vincent K, Hesnard L, et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med. 2018;10(470):1–12.
  • Kanaseki T, Torigoe T. Proteogenomics: advances in cancer antigen research. Immunol. Med. 2019;42(2):65–70
  • Erhard F, Dölken L, Schilling B, et al. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol Res. 2020;8(8):1018–1026.
  • Ye K, Schulz MH, Long Q, et al. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–2871.
  • Larson DE, Harris CC, Chen K, et al. Somaticsniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012;28(3):311–317.
  • Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–576.
  • Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–1222.
  • Fan Y, Xi L, Hughes DST, et al. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 2016;17(1):178.
  • Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–594.
  • Benjamin D, Sato T, Cibulskis K, et al. Calling somatic SNVs and indels with mutect2. bioRxiv. 2019 861054 ;1–8 doi:https://doi.org/10.1101/861054.
  • Eisen HN, Sykulev Y, Tsomides TJ. Antigen-specific T-cell receptors and their reactions with complexes formed by peptides with major histocompatibility complex proteins. Adv Protein Chem. 1996;49:1–56.
  • Sykulev Y, Joo M, Vturina I, et al. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996;4(6):565–571.
  • Valitutti S, Lanzavecchia A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol Today. 1997;18(6):299–304.
  • Purbhoo MA, Irvine DJ, Huppa JB, et al. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5(5):524–530.
  • Huang J, Brameshuber M, Zeng X, et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity. 2013;39(5):846–857.
  • Wolf BJ, Princiotta MF. Processing of recombinant listeria monocytogenes proteins for MHC Class I presentation follows a dedicated, high-efficiency pathway. J Immunol. 2013;190(6):2501–2509.
  • Cosma GL, Lobby JL, Fay EJ, et al. Kinetically distinct processing pathways diversify the CD8 + T cell response to a single viral epitope. Proc Natl Acad Sci. 2020;117(32) :19399–19407.
  • Apcher S, Daskalogianni C, Lejeune F, et al. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A. 2011;108(28):11572–11577.
  • Weinzierl AO, Lemmel C, Schoor O, et al. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics. 2007;6(1):102–113.
  • Pearson H, Daouda T, Granados DP, et al. MHC class I-associated peptides derive from selective regions of the human genome. J Clin Invest. 2016;126(12):4690–4701.
  • Campbell PJ, Getz G, Korbel JO, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93.
  • Kreiter S, Vormehr M, Van De Roemer N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–696.
  • Ott PA, Hu-Lieskovan S, Chmielowski B, et al. A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell. 2020;183(2):347–362.e24.
  • Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–645.
  • De Groot AS, Moise L, Liu R, et al. Immune camouflage: relevance to vaccines and human immunology. Hum Vaccines Immunother. 2014;10(12):3570–3575.
  • Lam H, McNeil LK, Starobinets H, et al. An empirical antigen selection method identifies neoantigens that either elicit broad anti-tumor T cell responses or drive tumor growth. Cancer Discov. 2021;11(3):696–713. candisc.0377.2020.
  • Fleri W, Paul S, Dhanda SK, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol. 2017;8:1–16.
  • Abelin JG, Keskin DB, Sarkizova S, et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity. 2017;46(2):315–326.
  • Bulik-Sullivan B, Busby J, Palmer CD, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2019;37(1):55–71.
  • Abelin JG, Harjanto D, Malloy M, et al. Defining HLA-II ligand processing and binding rules with mass spectrometry enhances cancer epitope prediction. Immunity. 2019;51(4):766–779.e17.
  • Sarkizova S, Klaeger S, Le PM, et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 2020;38(2):199–209.
  • Apps R, Meng Z, Del Prete GQ, et al. Relative expression levels of the HLA Class-I proteins in normal and HIV-Infected cells. J Immunol. 2015;194(8):3594–3600.
  • De Groot AS, Martin W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol. 2009;131(2):189–201.
  • Jawa V, Terry F, Gokemeijer J, et al. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation–updated consensus and review 2020. Front Immunol. 2020;11:1301.
  • Amatruda TT, Bohman R, Ranyard J, et al. Pattern of expression of HLA-DR and HLA-DQ antigens and mRNA in myeloid differentiation. Blood. 1987;69(4):1225–1236.
  • Lecchi M, Lovisone E, Genetta C, et al. γ-IFN induces a differential expression of HLA-DR, DQ and DP antigens on peripheral blood myeloid leukemic blasts at various stages of differentiation. Leuk Res. 1989;13(3):221–226.
  • Hartmaier RJ, Charo J, Fabrizio D, et al. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med. 2017;9(1):16.
  • Wang QJ, Yu Z, Griffith K, et al. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res. 2016;4(3):204–214.
  • Chheda ZS, Kohanbash G, Okada K, et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018;215(1):141–157.
  • Castle JC, Uduman M, Pabla S, et al. Mutation-derived neoantigens for cancer immunotherapy Front Immunol. 2019;10:1–7.
  • Linette GP, Stadtmauer EA, Maus MV, et al., Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6): 863–871.
  • Brian J. Cameron BKJ. identification of a Titin-Derived HLA-A1–presented peptide for MAGE A3 T cells. Sci Transl Med. 2013;10:1–13.
  • Devlin JR, Alonso JA, Ayres CM, et al., Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nat Chem Biol. 2020;16(11): 1269–1276.
  • Capietto A-H, Jhunjhunwala S, Pollock SB, et al. Mutation position is an important determinant for predicting cancer neoantigens. J Exp Med. 2020;217(4). https://doi.org/10.1084/jem.20190179.
  • Moise L, Gutierrez AH, Bailey-Kellogg C, et al. The two-faced T cell epitope: examining the host-microbe interface with JanusMatrix. Hum Vaccin Immunother. 2013;9(7):1577–1586.
  • Łuksza M, Riaz N, Makarov V, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–520.
  • Balachandran VP, Łuksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):S12–S16.
  • El-Kebir M, Satas G, Oesper L, et al. Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 2016;3(1):43–53.
  • Gerstung M, Jolly C, Leshchiner I, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578(7793):122–128.
  • Danilova L, Anagnostou V, Caushi JX, et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol Res. 2018;6(8):888–899.
  • Nogueira C, Kaufmann JK, Lam H, et al. Improving cancer immunotherapies through empirical neoantigen selection. Trends Cancer. 2018;4(2):97–100.
  • Cafri G, Yossef R, Pasetto A, et al. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat Commun. 2019;10(1):1–9.
  • Vita R, Mahajan S, Overton JA, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339–D343.
  • Rubinsteyn A, Kodysh J, Hodes I, et al. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front Immunol. 2018;8:1807.
  • Hundal J, Kiwala S, McMichael J, et al. PVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8(3):409–420.
  • Bjerregaard AM, Nielsen M, Hadrup SR, et al. MuPeXI: prediction of neo-epitopes from tumor sequencing data. Cancer Immunol Immunother. 2017;66(9):1123–1130.
  • De Groot AS, Moise L, Terry F, et al. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools. Front Immunol. 2020;11:1–13.
  • Maine CJ, Richard G, Spasova DS, et al. Self-replicating RNAs drive protective anti-tumor T cell responses to neoantigen vaccine targets in a combinatorial approach. Mol Ther. 2021;29(3):1186–1198.
  • De Groot AS, Sbai H, Saint AC, et al. Immuno-informatics: mining genomes for vaccine components. Immunol Cell Biol. 2002;80(3):255–269.
  • Losikoff PT, Mishra S, Terry F, et al. HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol. 2015;62(1):48–55.
  • Liu R, Moise L, Tassone R, et al. H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Hum Vaccines Immunother. 2015;11(9):2241–2252.
  • Wada Y, Nithichanon A, Nobusawa E, et al. A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines. Sci Rep. 2017;7(1):1283.
  • Scholzen A, Richard G, Moise L, et al. Promiscuous Coxiella burnetii CD4 epitope clusters associated with human recall responses are candidates for a novel T-cell targeted multi-epitope Q Fever vaccine. Front Immunol. 2019;10:1–22.
  • Hoffmann PR, Hoffmann FW, Premeaux TA, et al. Multi-antigen vaccination with simultaneous engagement of the OX40 receptor delays malignant mesothelioma growth and increases survival in animal models. Front Oncol. 2019;9:1–11.
  • He L, De Groot AS, Gutierrez AH, et al. Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage. BMC Bioinformatics. 2014;15(S4):S1–S1.
  • Kruiswijk C, Richard G, Salverda MLM, et al. In silico identification and modification of T cell epitopes in pertussis antigens associated with tolerance. Hum Vaccines Immunother. 2020;16(2):277–285.
  • Salerno-Gonçalves R, Tettelin H, Luo D, et al. Differential functional patterns of memory CD4(+) and CD8(+) T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins. Vaccine. 2020;38(2):258–270.
  • Scholzen A, Richard G, Moise L, et al. Coxiella burnetii epitope-specific T-cell responses in patients with chronic Q fever. Infect Immun. 2019;87(10):1–12.
  • Jang H, Meyers LM, Boyle C, et al. Immune-engineered H7N9 influenza hemagglutinin improves protection against viral influenza virus challenge. Hum Vaccines Immunother. 2020;16(9):2042–2050.
  • Khan S, Parrillo M, Gutierrez AH, et al. Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in Malawi. Hum Vaccines Immunother. 2020;16(2):214–227.
  • Meyers LM, Gutiérrez AH, Boyle CM, et al. Highly conserved, non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for COVID-19 vaccine design and validation. Npj Vaccines. 2021;6(1):1–14.
  • De Groot AS, Kazi ZB, Martin RF, et al. HLA- and genotype-based risk assessment model to identify infantile onset pompe disease patients at high-risk of developing significant anti-drug antibodies (ADA). Clin Immunol. 2019;200:66–70.
  • De Groot AS, Rosenberg AS, Miah SMS, et al. Identification of a potent regulatory T cell epitope in factor V that modulates CD4+ and CD8+ memory T cell responses. Clin Immunol. 2021;224:108661.
  • De Groot AS, Desai AK, Lelias S, et al. Immune tolerance-adjusted personalized immunogenicity prediction for pompe disease. Front Immunol. 2021;12:1–14.
  • Richard G, Berdugo G, Princiotta M, et al. P684 highly efficient selection of tumor neoantigens improves therapeutic cancer vaccine efficacy, 34th annual meeting & pre-conference programs of the society for immunotherapy of cancer (SITC 2019): part 2. J Immunother Cancer. 2019;7:283.
  • Jawa V, Cousens LP, Awwad M, et al. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–555.
  • Moise L, Gutierrez A, Kibria F, et al. iVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccines Immunother. 2015;11(9):2312–2321.
  • Ledford H. Programs face off in cancer contest: predictive algorithms may help to whittle down the possible candidates for personalized cancer vaccines. Nature. 2016;540(7633):328–329.
  • Wells DK, van Buuren MM, Dang KK, et al., Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell. 2020;183(3): 818–834.e13.