668
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Herpes zoster and simplex reactivation following COVID-19 vaccination: new insights from a vaccine adverse event reporting system (VAERS) database analysis

, , , , , , , , & show all
Pages 675-684 | Received 11 Oct 2021, Accepted 17 Feb 2022, Published online: 25 Feb 2022

References

  • Schnipper LE, Levin M, Crumpacker CS, et al. Virus replication and induction of interferon in human epidermal keratinocytes following infection with herpes simplex virus. J Invest Dermatol. 1984;82(1):94–96.
  • Nagel MA, Gilden D. Complications of varicella zoster virus reactivation. Curr Treat Options Neurol. 2013;15(4):439–453.
  • Bérar A, Ardois S, Walter-Moraux P, et al. Primary varicella-zoster virus infection of the immunocompromised associated with acute pancreatitis and hemophagocytic lymphohistiocytosis: a case report. Medicine (Baltimore). 2021;100(16):e25351.
  • Andrei G, Snoeck R. Advances and perspectives in the management of varicella-zoster virus infections. Molecules. 2021;26(4):1132.
  • Amaral V, Shi JZ, Tsang AM-C, et al. Primary varicella zoster infection compared to varicella vaccine reactivation associated meningitis in immunocompetent children. J Paediatr Child Health. 2021;57(1):19–25.
  • Schmader K, Schmader K. Herpes zoster in older adults. Clin Infect Dis. 2001;32(10):1481–1486.
  • Tseng HF, Bruxvoort K, Ackerson B, et al. The epidemiology of herpes zoster in immunocompetent, unvaccinated adults ≥50 years old: incidence, complications, hospitalization, mortality, and recurrence. J Infect Dis. 2020;222(5):798–806.
  • Kawai K, Yawn BP, Wollan P, et al. Increasing incidence of herpes zoster over a 60-year period from a population-based study. Clin Infect Dis. 2016;63(2):221–226.
  • Harpaz R, Leung JW. The epidemiology of herpes zoster in the United States during the era of varicella and herpes zoster vaccines: changing patterns among older adults. Clin Infect Dis. 2019;69(2):341–344.
  • Arvin AM. Humoral and cellular immunity to varicella-zoster virus: an overview. J Infect Dis. 2008;197(Suppl 2):S58–60.
  • Gonzalez MP, Rios R, Pappaterra M, et al. Reactivation of acute retinal necrosis following sars-cov-2 infection. Case Rep Ophthalmol Med. 2021;2021:7336488.
  • Katz J, Yue S, Xue W. Herpes simplex and herpes zoster viruses in COVID-19 patients. Ir J Med Sci. 2021. DOI:https://doi.org/10.1007/s11845-021-02714-z
  • Balc’h P L, Pinceaux K, Pronier C, et al. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit Care. 2020;24(1):530.
  • Maldonado MD, Romero-Aibar J, Pérez-San-Gregorio MA. COVID-19 pandemic as a risk factor for the reactivation of herpes viruses. Epidemiol Infect. 2021;149:e145.
  • Tartari F, Spadotto A, Zengarini C, et al. Herpes zoster in COVID-19-positive patients. Int J Dermatol. 2020;59(8):1028–1029.
  • Xu R, Zhou Y, Cai L, et al. Co-reactivation of the human herpesvirus alpha subfamily (herpes simplex virus-1 and varicella zoster virus) in a critically ill patient with COVID-19. Br J Dermatol. 2020;183(6):1145–1147.
  • Maia CMF, Marques NP, de LEHG, et al. Increased number of herpes zoster cases in Brazil related to the COVID-19 pandemic. Int J Infect Dis. 2021;104:732–733.
  • Elsaie ML, Nada HA. Herpes zoster (shingles) complicating the course of COVID19 infection. J Dermatological Treat. 2020;1–3.
  • ACAdF F, Romão TT, Macedo YS, et al. COVID-19 and herpes zoster co-infection presenting with trigeminal neuropathy. Eur J Neurol. 2020;27(9):1748–1750.
  • Saati A, Al-Husayni F, Malibari AA, et al. Herpes zoster co-infection in an immunocompetent patient with COVID-19. Cureus. 2020;12(7):e8998.
  • Voisin O, Deluca N, Mahé A, et al. Disseminated Herpes Zoster During COVID-19. Infect Dis Clin Pract. 2021;29(2):e109–e110.
  • Drago F, Ciccarese G, Rebora A, et al. Human herpesvirus-6, −7, and Epstein-Barr virus reactivation in pityriasis rosea during COVID-19. J Med Virol. 2021;93(4):1850–1851.
  • Elsaie ML, Youssef EA, Nada HA. Herpes zoster might be an indicator for latent COVID 19 infection. Dermatol Ther. 2020;33(4):e13666.
  • WHO. Coronavirus (COVID-19) Dashboard Geneva: world Health Organization. 2021. Available from online: https://covid19.who.int/ [2021 Aug 7].
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–416.
  • Chung H, He S, Nasreen S, et al. Effectiveness of bNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-cov-2 infection and severe covid-19 outcomes in Ontario, Canada: test negative design study. BMJ. 2021;374. DOI:https://doi.org/10.1136/bmj.n1943.
  • García-Montero C, Fraile-Martínez O, Bravo C, et al. An updated review of sars-cov-2 vaccines and the importance of effective vaccination programs in pandemic times. Vaccines (Basel). 2021;9(5):433.
  • Gringeri M, Mosini G, Battini V, et al. Preliminary evidence on the safety profile of bnt162b2 (comirnaty): new insights from data analysis in eudravigilance and adverse reaction reports from an Italian health facility. Hum Vaccin Immunother. 2021;17(9):2969–2971.
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603–2615.
  • Walsh EE, Frenck RW, Falsey AR, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–2450.
  • Moodley A, Swanson J, Grose C, et al. Severe herpes zoster following varicella vaccination in immunocompetent young children. J Child Neurol. 2019;34(4):184–188.
  • Walter R, Hartmann K, Fleisch F, et al. Reactivation of herpesvirus infections after vaccinations?. Lancet. 1999;353(9155):810.
  • Bayas J-M, González-Alvarez R, Guinovart C. Herpes zoster after yellow fever vaccination. J Travel Med. 2007;14(1):65–66.
  • Rothova A, de GJDF, Mudrikova T. Reactivation of acute retinal necrosis after flu H1N1 vaccination. Br J Ophthalmol. 2011;95(2):291.
  • Lieberman A, Curtis L. HSV2 reactivation and myelitis following influenza vaccination. Hum Vaccin Immunother. 2017;13(3):572–573.
  • Hassman LM, DiLoreto DA. Immunologic factors may play a role in herpes simplex virus 1 reactivation in the brain and retina after influenza vaccination. IDCases. 2016;6:47–51.
  • Alpalhão M, Filipe P. Herpes zoster following sars-cov-2 vaccination - a series of four cases. J Eur Acad Dermatol Venereol. 2021;35(11). DOI:https://doi.org/10.1111/jdv.17555
  • Bostan E, Yalici-Armagan B. Herpes zoster following inactivated COVID-19 vaccine: a coexistence or coincidence? J Cosmet Dermatol. 2021;20(6):1566–1567.
  • Channa L, Torre K, Rothe M. Herpes zoster reactivation after mRNA-1273 (moderna) SARS-CoV-2 vaccination. JAAD Case Rep. 2021;15:60–61.
  • Chiu -H-H, Wei K-C, Chen A, et al. Herpes zoster following COVID-19 vaccine: report of 3 cases. QJM. 2021;114(7):531–532.
  • Eid E, Abdullah L, Kurban M, et al. Herpes zoster emergence following mRNA COVID-19 vaccine. J Med Virol. 2021;93(9):5231–5232.
  • Lee C, Cotter D, Basa J, et al. 20 post-covid-19 vaccine-related shingles cases seen at the las vegas dermatology clinic and sent to us via social media. J Cosmet Dermatol. 2021;20(7):1960–1964.
  • Özdemir AK, Kayhan S, Çakmak SK. Herpes zoster after inactivated SARS-cov-2 vaccine in two healthy young adults. J Eur Acad Dermatol Venereol. 2021;35(12). DOI:https://doi.org/10.1111/jdv.17577
  • Psichogiou M, Samarkos M, Mikos N, et al. Reactivation of varicella zoster virus after vaccination for sars-coV-2. Vaccines (Basel). 2021;9(6):572.
  • Tessas I, Kluger N. Ipsilateral herpes zoster after the first dose of BNT162b2 mRNA COVID-19 vaccine. J Eur Acad Dermatol Venereol. 2021;35(10). https://doi.org/10.1111/jdv.17422
  • Vastarella M, Picone V, Martora F, et al. Herpes zoster after ChAdOx1 nCoV-19 vaccine: a case series. J Eur Acad Dermatol Venereol. 2021;35(12). https://doi.org/10.1111/jdv.17576.
  • van Dam Cs, Lede I, Schaar J, et al. Herpes Zoster after COVID-vaccination. Int J Infect Dis. 2021;111:169–171.
  • Aksu SB, Öztürk GZ. A rare case of shingles after COVID-19 vaccine: is it a possible adverse effect? Clin Exp Vaccine Res. 2021;10(2):198–201.
  • Rodríguez-Jiménez P, Chicharro P, Cabrera L-M, et al. Varicella-zoster virus reactivation after SARS-COV-2 BNT162b2 mRNA vaccination: report of 5 cases. JAAD Case Rep. 2021;12:58–59.
  • Housel LA, McClenathan BM. Herpes zoster after recombinant zoster vaccine: a first case report. J Allergy Clin Immunol Pract. 2020;8(2):772–774.e1.
  • Koumaki D, Krueger-Krasagakis S-E, Papadakis M, et al. Herpes Zoster Viral (HZV) infection after AZD1222 and BNT162b2 COVID-19 mRNA vaccines: a case series. J Eur Acad Dermatol Venereol. 2021;36(2):e85–e86.
  • Maruki T, Ishikane M, Suzuki T, et al. A case of varicella zoster virus meningitis following BNT162b2 mRNA COVID-19 vaccination in an immunocompetent patient. Int J Infect Dis. 2021;113:55–57.
  • Said JT, Virgen CA, Lian CG, et al. Disseminated varicella-zoster virus infections following mRNA-based covid-19 vaccination. JAAD Case Reports 2021.
  • Mishra SB, Mahendradas P, Kawali A, et al. Reactivation of varicella zoster infection presenting as acute retinal necrosis post COVID 19 vaccination in an Asian Indian male. Eur J Ophthalmol 2021 11206721211046485 https://doi.org/10.1177/11206721211046485
  • Papasavvas I, de CC, Herbort CP. Varicella-zoster virus reactivation causing herpes zoster ophthalmicus (HZO) after SARS-CoV-2 vaccination - report of three cases. J Ophthal Inflamm Infect. 2021;11(1):28
  • Mohta A, Arora A, Srinivasa R, et al. Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria being treated with cyclosporine-A report of 3 cases. J Cosmet Dermatol. 2021;20(11):3384–3386.
  • Thimmanagari K, Veeraballi S, Roach D, et al. Ipsilateral zoster ophthalmicus post covid-19 vaccine in healthy young adults. Cureus. 2021;13(7):e16725.
  • Richardson-May J, Rothwell A, Rashid M. Reactivation of herpes simplex keratitis following vaccination for COVID-19. BMJ Case Rep. 2021;14(9):e245792.
  • Alkhalifah MI, Alsobki HE, Alwael HM, et al. Herpes simplex virus keratitis reactivation after sars-cov-2 bnt162b2 mRNA vaccination: a report of two cases. Ocul Immunol Inflamm. 2021;1–3.
  • McMahon DE, Amerson E, Rosenbach M, et al. Cutaneous reactions reported after moderna and pfizer COVID-19 vaccination: a registry-based study of 414 cases. J Am Acad Dermatol. 2021;85(1):46–55.
  • Català A, Muñoz-Santos C, Galván-Casas C, et al. Cutaneous reactions after SARS-COV-2 vaccination: a cross-sectional Spanish nationwide study of 405 cases. Br J Dermatol. 2021;186(1):142–152.
  • Pellegrino P, Carnovale C, Borsadoli C, et al. Two cases of hallucination in elderly patients due to a probable interaction between flu immunization and tramadol. Eur J Clin Pharmacol. 2013;69(8):1615–1616.
  • Pellegrino P, Carnovale C, Perrone V, et al. No evidence of a link between multiple sclerosis and the vaccine against the human papillomavirus. Eur J Epidemiol. 2013;28(8):705–707.
  • US FDA. Postmarketing reporting of adverse drug experiences, Code of Federal Regulation Title 21, (21 CFR 314.80).: Silver Spring: US FDA; 2012.
  • US FDA. Postmarketing reporting of adverse experiences, code of federal regulations title 21 (21 CFR 600.80).: Silver Spring: US FDA; 2012.
  • Du J, Xiang Y, Sankaranarayanapillai M, et al. Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning. J Am Med Inform Assoc. 2021;28(7):1393–1400.
  • Singleton J. An overview of the vaccine adverse event reporting system (VAERS) as a surveillance system. Vaccine. 1999;17(22):2908–2917.
  • Rizk JG, Barr CE, Rizk Y, et al. The next frontier in vaccine safety and VAERS: lessons from COVID-19 and ten recommendations for action. Vaccine. 2021;39(41):6017–6018.
  • Pellegrino P, Carnovale C, Perrone V, et al. Acute disseminated encephalomyelitis onset: evaluation based on vaccine adverse events reporting systems. PLoS ONE. 2013;8(10):e77766.
  • Pellegrino P, Perrone V, Pozzi M, et al. The epidemiological profile of Asia syndrome after HPV vaccination: an evaluation based on the vaccine adverse event reporting systems. Immunol Res. 2015;61(1–2):90–96.
  • ICH Harmonised Tripartite. Post-approval safety data management: definitions and standards for expedited reporting E2DInternational Conference On. Harmonisation of technical requirements for registration of pharmaceuticals for human use. Guideline -. 4th ed. 2003.
  • Centers for Disease Control and Prevention. COVID-19 Vaccination in the United States. [cited 17 Dec 2021]. https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total.
  • Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio and its advantages over the proportional reporting ratio Pharmacoepidem. Drug Safe. 2004;13(8):519–523
  • Faillie J-L. Les études cas–non cas: principe, méthodes, biais et interprétations. Therapies. 2018;73(3):247–255.
  • Montastruc J-L, Sommet A, Bagheri H, et al. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database. Br J Clin Pharmacol. 2011;72(6):905–908.
  • James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5):315–329.
  • McQuillan G, Kruszon-Moran D, Flagg EW, et al. Prevalence of herpes simplex virus type 1 and type 2 in persons aged 14-49: United States, 2015-2016. NCHS Data Brief. 2018;304:1–8. PMID: 29442994.
  • Yawn BP, Saddier P, Wollan PC, et al. A population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. Mayo Clinic Proceedings 2007;82:1341–1349.
  • Shasha D, Bareket R, Sikron FH, et al. Real-world safety data for the Pfizer BNT162b2 SARS-CoV-2 vaccine, historical cohort study. Clin Microbiol Infect. 2021. https://doi.org/10.1016/j.cmi.2021.12.010.
  • Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. Eur J Clin Invest. 2021;51(1):e13429.
  • Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535.
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269–270.
  • Xu B, Fan C, Wang A, et al. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China. J Infect. 2020;81(1):e51–e60.
  • Henry BM, de OMHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021–1028.
  • Gerada C, Campbell TM, Kennedy JJ, et al. Manipulation of the innate immune response by varicella zoster virus. Front Immunol. 2020;11:1.
  • Nofal A, Fawzy MM, Sharaf EL Deen SM, et al. Herpes zoster ophthalmicus in COVID-19 patients. Int J Dermatol. 2020;59(12):1545–1546.
  • Pona A, Jiwani RA, Afriyie F, et al. Herpes zoster as a potential complication of coronavirus disease 2019. Dermatol Ther. 2020;33(6):e13930.
  • Veenstra J, Krol A, van Praag RM, et al. Herpes zoster, immunological deterioration and disease progression in HIV-1 infection. AIDS. 1995;9(10):1153–1158.
  • Martínez E, Gatell J, Morán Y, et al. High incidence of herpes zoster in patients with AIDS soon after therapy with protease inhibitors. Clin Infect Dis. 1998;27(6):1510–1513.
  • Yu X, Li L, Chan MTV, et al. Bioinformatic analyses suggest augmented interleukin-17 signaling as the mechanism of COVID-19-associated herpes zoster. Environ Sci Pollut Res. 2021;28(46):65769–65775.
  • de BS, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):3434.
  • Zajkowska A, Garkowski A, Świerzbińska R, et al. Evaluation of chosen cytokine levels among patients with herpes zoster as ability to provide immune response. PLoS ONE. 2016;11(3):e0150301.
  • Sahin U, Muik A, and Vogler I, et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. Nature. 2021;595(7868):572-577.
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279.
  • Johnson RW, Alvarez-Pasquin M-J, Bijl M, et al. Herpes zoster epidemiology, management, and disease and economic burden in Europe: a multidisciplinary perspective. Ther Adv Vaccines. 2015;3(4):109–120.
  • Zhang Z, Zheng Y, Niu Z, et al. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ. 2021;28(9):2765–2777.
  • Chiang S-F, Lin T-Y, Chow K-C, et al., SARS spike protein induces phenotypic conversion of human B cells to macrophage-like cells. Mol Immunol. 47(16): 2575–2586. 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.