141
Views
0
CrossRef citations to date
0
Altmetric
Review

Vaccination efforts for Buruli ulcer

ORCID Icon, , & ORCID Icon
Pages 1419-1428 | Received 20 Dec 2021, Accepted 11 Aug 2022, Published online: 24 Aug 2022

References

  • Van der Werf TS, Van der Graaf WT, Tappero JW, et al. Mycobacterium ulcerans infection. Lancet. 1999;354(9183):1013–1018.
  • WHO. A sustainability framework for action against neglected tropical diseases 2021–2030. Ending the neglect to attain the sustainable development goals. (Ed.^(Eds); 2020.
  • CDC. Neglected tropical diseases (NTDs). (Ed.^(Eds); 2020.
  • WHO. Neglected tropical diseases. (Ed.^(Eds); 2012.
  • CORDIS. Identification and development of vaccine candidates for Buruli ulcer disease. (Ed.^(Eds); 2010.
  • WHO. Buruli ulcer (Mycobacterium ulcerans infection). (Ed.^(Eds); 2021.
  • Kumar S, Basu S, Bhartiya SK, et al. The Buruli ulcer. Int J Low Extrem Wounds. 2015;14(3):217–223.
  • Omansen TF, Erbowor-Becksen A, Yotsu R, et al. Global epidemiology of Buruli ulcer, 2010–2017, and analysis of 2014 WHO Programmatic Targets. Emerg Infect Dis. 2019;25(12):2183–2190.
  • Walsh DS, Portaels F, Meyers WM. Buruli ulcer (Mycobacterium ulcerans infection). Trans R Soc Trop Med Hyg. 2008;102(10):969–978.
  • Der Werf TS V, Barogui YT, Converse PJ, et al. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol. 2020;13(4):391–401.
  • WHO. Buruli ulcer (Mycobacterium ulcerans infection). 2022. https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(mycobacterium-ulcerans-infection)
  • Marsollier L, Robert R, Aubry J, et al., Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol. 2002;68(9):4623–4628.
  • Merritt RW, Walker ED, Small PL, et al. Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl Trop Dis. 2010;4(12):e911.
  • CDC. Buruli Ulcer. (Ed.^(Eds); 2015.
  • Goverment VS. Buruli ulcer bacteria identified in inner west Melbourne. (Ed.^(Eds); 2021.
  • van der Werf TS, Stienstra Y, Johnson RC, et al. Mycobacterium ulcerans disease. Bull World Health Organ. 2005;83(10):785–791.
  • Sarfo FS, Phillips RO, Zhang J, et al. Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease. BMC Infect Dis. 2014;14(1):202.
  • Sizaire V, Nackers F, Comte E, et al. Mycobacterium ulcerans infection: control, diagnosis, and treatment. Lancet Infect Dis. 2006;6(5):288–296.
  • Owusu E, Newman MJ, Kotey NK, et al. Susceptibility profiles of Mycobacterium ulcerans Isolates to streptomycin and rifampicin in two districts of the Eastern Region of Ghana. Int J Microbiol. 2016;2016:8304524.
  • Roltgen K, Pluschke G, Spencer JS, et al. The immunology of other mycobacteria: m. ulcerans, M. leprae. Semin Immunopathol. 2020;42(3):333–353.
  • Raghunathan PL, Whitney EA, Asamoa K, et al. Risk factors for Buruli ulcer disease (Mycobacterium ulcerans Infection): results from a case-control study in Ghana. Clin Infect Dis. 2005;40(10):1445–1453.
  • Simpson H, Deribe K, Tabah EN, et al., Mapping the global distribution of Buruli ulcer: a systematic review with evidence consensus. Lancet Glob Health. 2019;7(7):e912–e922.
  • Johnson PDR. Buruli ulcer in Australia. In: Pluschke G, Roltgen K, editors. Buruli ulcer: mycobacterium ulcerans disease. Cham (CH): Springer;2019. p. 61–76.
  • Radford AJ. Mycobacterium ulcerans in Australia. Aust N Z J Med. 1975;5(2):162–169.
  • Steffen CM, Smith M, McBride WJ. Mycobacterium ulcerans infection in North Queensland: the ‘Daintree ulcer.’ ANZ J Surg. 2010;80(10):732–736.
  • Steffen CM, Freeborn H. Mycobacterium ulcerans in the Daintree 2009-2015 and the mini-epidemic of 2011. ANZ J Surg. 2018;88(4):E289–E293.
  • Johnson PD, Veitch MG, Leslie DE, et al. The emergence of Mycobacterium ulcerans infection near Melbourne. Med J Aust. 1996;164(2):76–78.
  • Health and Human Services Victoria: surveillance of notifiable conditions in Victoria; 2021. http://www.health.vic.gov.au/ideas/downloads/daily_reports/rptVS_SNIDSVictorianSummary_GR.pdf
  • van Ravensway J, Benbow ME, Tsonis AA, et al. Climate and landscape factors associated with Buruli ulcer incidence in Victoria, Australia. PLoS One. 2012;7(12):e51074.
  • Faber WR, Arias-Bouda LM, Zeegelaar JE, et al. First reported case of Mycobacterium ulcerans infection in a patient from China. Trans R Soc Trop Med Hyg. 2000;94(3):277–279.
  • Silva MT, Portaels F, Pedrosa J. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infect Dis. 2009;9(11):699–710.
  • Porter JL, Tobias NJ, Pidot SJ, et al. The cell wall-associated mycolactone polyketide synthases are necessary but not sufficient for mycolactone biosynthesis. PLoS One. 2013;8(7):e70520.
  • Huber CA, Ruf MT, Pluschke G, et al. Independent loss of immunogenic proteins in Mycobacterium ulcerans suggests immune evasion. Clin Vaccine Immunol. 2008;15(4):598–606.
  • Bieri R, Bolz M, Ruf MT, et al. Interferon-gamma is a crucial activator of early host immune defense against Mycobacterium ulcerans infection in mice. PLoS Negl Trop Dis. 2016;10(2):e0004450.
  • Torrado E, Fraga AG, Castro AG, et al. Evidence for an intramacrophage growth phase of Mycobacterium ulcerans. Infect Immun. 2007;75(2):977–987.
  • Yeboah-Manu D, Peduzzi E, Mensah-Quainoo E, et al. Systemic suppression of interferon-gamma responses in Buruli ulcer patients resolves after surgical excision of the lesions caused by the extracellular pathogen Mycobacterium ulcerans. J Leukoc Biol. 2006;79(6):1150–1156.
  • Demangel C, High S. Sec61 blockade by mycolactone: a central mechanism in Buruli ulcer disease. Biol Cell. 2018;110(11):237–248.
  • Foulon M, Robbe-Saule M, Manry J, et al. Mycolactone toxin induces an inflammatory response by targeting the IL-1beta pathway: mechanistic insight into Buruli ulcer pathophysiology. PLoS Pathog. 2020;16(12):e1009107.
  • Hsieh LT, Dos Santos SJ, Hall BS, et al., Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1beta, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog. 2022. 18(1): e1010280.
  • Eddyani M, Vandelannoote K, Meehan CJ, et al. A genomic approach to resolving relapse versus reinfection among four cases of Buruli ulcer. PLoS Negl Trop Dis. 2015;9(11):e0004158.
  • van der Werf TS, Stinear T, Stienstra Y, et al. Mycolactones and Mycobacterium ulcerans disease. Lancet. 2003;362(9389):1062–1064.
  • Phillips RO, Robert J, Abass KM, et al. Rifampicin and clarithromycin (extended release) versus rifampicin and streptomycin for limited Buruli ulcer lesions: a randomised, open-label, non-inferiority phase 3 trial. Lancet. 2020;395(10232):1259–1267.
  • Ji B, Chauffour A, Robert J, et al. Orally administered combined regimens for treatment of Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother. 2007;51(10):3737–3739.
  • O’Brien DP, McDonald A, Callan P, et al. Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of Mycobacterium ulcerans: an observational cohort study. PLoS Negl Trop Dis. 2012;6(1):e1473.
  • Gordon CL, Buntine JA, Hayman JA, et al. All-oral antibiotic treatment for buruli ulcer: a report of four patients. PLoS Negl Trop Dis. 2010;4(11):e770.
  • Mendes AI, Rebelo R, Aroso I, et al. Development of an antibiotics delivery system for topical treatment of the neglected tropical disease Buruli ulcer. Int J Pharm. 2022;121954. doi:10.1016/j.ijpharm.2022.121954.
  • Brown SC, Altman K. Buruli ulcer treatment & management. eMedicine. 2021. https://emedicine.medscape.com/article/1104891-treatment#d8
  • Wadagni AC, Barogui YT, Johnson RC, et al., Delayed versus standard assessment for excision surgery in patients with Buruli ulcer in Benin: a randomised controlled trial. Lancet Infect Dis. 2018. 18(6): 650–656.
  • Macdonald JM, Geyer MJ, Organization WH. Wound and lymphoedema management. 2010;7:1–122. https://apps.who.int/iris/handle/10665/44279
  • Benard A, Sala C, Pluschke G. Mycobacterium ulcerans mouse model refinement for pre-clinical profiling of vaccine candidates. PLoS One. 2016;11(11):e0167059.
  • Dega H, Robert J, Bonnafous P, et al. Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother. 2000;44(9):2367–2372.
  • Omansen TF, Marcsisin RA, Chua BY, et al. In vivo imaging of bioluminescent Mycobacterium ulcerans: a tool to refine the murine Buruli ulcer tail model. Am J Trop Med Hyg. 2019;101(6):1312–1321.
  • Fenner F. The pathogenic behavior of Mycobacterium ulcerans and Mycobacterium balnei in the mouse and the developing chick embryo. Am Rev Tuberc. 1956;73(5):650–673.
  • Oliveira MS, Fraga AG, Torrado E, et al. Infection with Mycobacterium ulcerans induces persistent inflammatory responses in mice. Infect Immun. 2005;73(10):6299–6310.
  • Cope RB, Stang B, Valentine BA, et al. Topical exposure to exogenous ultraviolet-irradiated urocanic acid enhances Mycobacterium ulcerans infection in a Crl:IAF(HA)-hrBR hairless Guinea-pig model of Buruli ulcer disease. Photodermatol Photoimmunol Photomed. 2004;20(1):14–20.
  • Williamson HR, Mosi L, Donnell R, et al. Mycobacterium ulcerans fails to infect through skin abrasions in a Guinea pig infection model: implications for transmission. PLoS Negl Trop Dis. 2014;8(4):e2770.
  • Marcus LC, Stottmeier KD, Morrow RH. Experimental infection of anole lizards (Anolis carolinensis) with Mycobacterium ulcerans by the subcutaneous route. Am J Trop Med Hyg. 1975;24(4):649–655.
  • Walsh DS, Meyers WM, Krieg RE, et al. Transmission of Mycobacterium ulcerans to the nine-banded armadillo. Am J Trop Med Hyg. 1999;61(5):694–697.
  • Walsh DS, Dela Cruz EC, Abalos RM, et al. Clinical and histologic features of skin lesions in a cynomolgus monkey experimentally infected with mycobacterium ulcerans (Buruli ulcer) by intradermal inoculation. Am J Trop Med Hyg. 2007;76(1):132–134.
  • Converse PJ, Almeida DV, Nuermberger EL, et al. BCG-mediated protection against Mycobacterium ulcerans infection in the mouse. PLoS Negl Trop Dis. 2011;5(3):e985.
  • Fenner F. Homologous and heterologous immunity in infections of mice with Mycobacterium ulcerans and Mycobacterium balnei. Am Rev Tuberc. 1957;76(1):76–89.
  • Tanghe A, Adnet PY, Gartner T, et al. A booster vaccination with Mycobacterium bovis BCG does not increase the protective effect of the vaccine against experimental Mycobacterium ulcerans infection in mice. Infect Immun. 2007;75(5):2642–2644.
  • Tanghe A, Dangy JP, Pluschke G, et al. Improved protective efficacy of a species-specific DNA vaccine encoding mycolyl-transferase Ag85A from Mycobacterium ulcerans by homologous protein boosting. PLoS Negl Trop Dis. 2008;2(3):e199.
  • Hart BE, Hale LP, Lee S. Recombinant BCG Expressing Mycobacterium ulcerans Ag85A imparts enhanced protection against experimental Buruli ulcer. PLoS Negl Trop Dis. 2015;9(9):e0004046.
  • Hart BE, Lee S. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH fusion protein in recombinant BCG Improves experimental buruli ulcer vaccine efficacy. PLoS Negl Trop Dis. 2016;10(12):e0005229.
  • Coutanceau E, Legras P, Marsollier L, et al. Immunogenicity of Mycobacterium ulcerans Hsp65 and protective efficacy of a Mycobacterium leprae Hsp65-based DNA vaccine against Buruli ulcer. Microbes Infect. 2006;8(8):2075–2081.
  • Mangas KM, Tobias NJ, Marion E, et al. High antibody titres induced by protein subunit vaccines using Mycobacterium ulcerans antigens Hsp18 and MUL_3720 with a TLR-2 agonist fail to protect against Buruli ulcer in mice. PeerJ. 2020;8:e9659.
  • Mangas KM, Buultjens AH, Porter JL, et al. Vaccine-specific immune responses against Mycobacterium ulcerans Infection in a low-dose murine challenge model. Infect Immun. 2020;88(3). DOI:10.1128/IAI.00753-19
  • Hossain MK, Hassanzadeganroudsari M, Nurgali K, et al. Vaccine development against methamphetamine drug addiction. Expert Rev Vaccines. 2020;19(12):1105–1114.
  • Apostolopoulos V, Rostami A, Matsoukas J. The long road of immunotherapeutics against multiple sclerosis. Brain Sci. 2020;10(5):288.
  • Pouniotis D, Tang CK, Apostolopoulos V, et al. Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells. Immunol Res. 2016;64(4):887–900.
  • Apostolopoulos V. Vaccine delivery methods into the future. Vaccines (Basel). 2016. 4(2). DOI:10.3390/vaccines4020009.
  • Vassilaros S, Tsibanis A, Tsikkinis A, et al. Up to 15-year clinical follow-up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan-MUC1. Immunotherapy. 2013;5(11):1177–1182.
  • Apostolopoulos V, Thalhammer T, Tzakos AG, et al. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv. 2013;2013:869718.
  • Apostolopoulos V. Cancer vaccines: looking to the future. Interview by Jenaid Rees. Expert Rev Vaccines. 2013;12(10):1125–1126.
  • Wilkinson BL, Day S, Malins LR, et al. Self-adjuvanting multicomponent cancer vaccine candidates combining per-glycosylated MUC1 glycopeptides and the toll-like receptor 2 agonist Pam3CysSer. Angew Chem Int Ed Engl. 2011;50(7):1635–1639.
  • Apostolopoulos V, Plebanski M. The evolution of DNA vaccines. Curr Opin Mol Ther. 2000;2(4):441–447.
  • Apostolopoulos V, Pietersz GA, Gordon S, et al. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol. 2000;30(6):1714–1723.
  • Apostolopoulos V, Barnes N, Pietersz GA, et al. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine. 2000;18(27):3174–3184.
  • Apostolopoulos V, Osinski C, McKenzie IF. MUC1 cross-reactive Gal alpha(1,3)Gal antibodies in humans switch immune responses from cellular to humoral. Nat Med. 1998;4(3):315–320.
  • Apostolopoulos V, Lofthouse SA, Popovski V, et al. Peptide mimics of a tumor antigen induce functional cytotoxic T cells. Nat Biotechnol. 1998;16(3):276–280.
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine. 1996;14(9):930–938.
  • Apostolopoulos V, Pietersz GA, Loveland BE, et al. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci U S A. 1995;92(22):10128–10132.
  • Ishwarlall TZ, Okpeku M, Adeniyi AA, et al. The search for a Buruli ulcer vaccine and the effectiveness of the Bacillus Calmette-Guerin vaccine. Acta Trop. 2022;228:106323.
  • Group TUB. Epidemiology of Mycobacterium ulcerans infection (Buruli ulcer) at Kinyara, Uganda. Trans R Soc Trop Med Hyg. 1971;65(6):763–775.
  • Amofah GK, Sagoe-Moses C, Adjei-Acquah C, et al. Epidemiology of Buruli ulcer in Amansie West district, Ghana. Trans R Soc Trop Med Hyg. 1993;87(6):644–645.
  • Portaels F, Aguiar J, Debacker M, et al. Mycobacterium bovis BCG vaccination as prophylaxis against Mycobacterium ulcerans osteomyelitis in Buruli ulcer disease. Infect Immun. 2004;72(1):62–65.
  • Noeske J, Kuaban C, Rondini S, et al. Buruli ulcer disease in Cameroon rediscovered. Am J Trop Med Hyg. 2004;70(5):520–526.
  • Teelken MA, Stienstra Y, Ellen DE, et al. Buruli ulcer: differences in treatment outcome between two centres in Ghana. Acta Trop. 2003;88(1):51–56.
  • Pouillot R, Matias G, Wondje CM, et al. Risk factors for buruli ulcer: a case control study in Cameroon. PLoS Negl Trop Dis. 2007;1(3):e101.
  • Quek TY, Athan E, Henry MJ, et al. Risk factors for Mycobacterium ulcerans infection, southeastern Australia. Emerg Infect Dis. 2007;13(11):1661–1666.
  • Nackers F, Dramaix M, Johnson RC, et al., BCG vaccine effectiveness against Buruli ulcer: a case-control study in Benin. Am J Trop Med Hyg. 2006. 75(4):768–774.
  • Phillips RO, Phanzu DM, Beer M, et al. Effectiveness of routine BCG vaccination on buruli ulcer disease: a case-control study in the Democratic Republic of Congo, Ghana and Togo. PLoS Negl Trop Dis. 2015;9(1):e3457.
  • Debacker M, Portaels F, Aguiar J, et al. Risk factors for Buruli ulcer, Benin. Emerg Infect Dis. 2006;12(9):1325–1331.
  • Pittet LF, Tebruegge M, Dutta B, et al. Mycobacterium ulcerans-specific immune response after immunisation with bacillus Calmette-Guerin (BCG) vaccine. Vaccine. 2021;39(4):652–657.
  • Chavda VP, Apostolopoulos V. Is booster dose strategy sufficient for omicron variant of SARS-CoV-2? Vaccines (Basel). 2022;10(3). DOI:10.3390/vaccines10030367
  • Chavda VP, Apostolopoulos V. Omicron variant (B.1.1.529) of SARS-CoV-2: threat for the elderly? Maturitas. 2022;158:78–81.
  • Chavda VP, Apostolopoulos V. Global impact of delta plus variant and vaccination. Expert Rev Vaccines. 2022;21(5):597–600.
  • Chavda VP, Bezbaruah R, Athalye M, et al. Replicating Viral Vector-Based Vaccines for COVID-19: potential avenue in vaccination Arena. Viruses. 2022;14(4):759.
  • Chavda VP, Kapadia C, Soni S, et al., A global picture: therapeutic perspectives for COVID-19. Immunotherapy. 2022;14(5):351–371.
  • Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev Vaccines. 2021;20(12):1549–1560.
  • Huang Z, Chavda VP, Vora LK, et al. 2-deoxy-d-glucose and its derivatives for the COVID-19 treatment: an update. Front Pharmacol. 2022;13:899633.
  • Acres B, Apostolopoulos V, Balloul JM, et al. MUC1-specific immune responses in human MUC1 transgenic mice immunized with various human MUC1 vaccines. Cancer Immunol Immunother. 2000;48(10):588–594.
  • Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res. 2006;8(3):R27.
  • Karanikas V, Hwang LA, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest. 1997;100(11):2783–2792.
  • Loveland BE, Zhao A, White S, et al. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res. 2006;12(3 Pt 1):869–877.
  • Tang CK, Apostolopoulos V. Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines. 2008;7(7):951–962.
  • Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev Vaccines. 2008;7(7):963–975.
  • Apostolopoulos V, Weiner DB. Development of more efficient and effective DNA vaccines. Expert Rev Vaccines. 2009;8(9):1133–1134.
  • Minigo G, Scholzen A, Tang CK, et al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine. 2007;25(7):1316–1327.
  • Son HY, Apostolopoulos V, Chung JK, et al. Protective efficacy of a plasmid DNA vaccine against transgene-specific tumors by Th1 cellular immune responses after intradermal injection. Cell Immunol. 2018;329:17–26.
  • Tang CK, Sheng KC, Apostolopoulos V, et al. Protein/peptide and DNA vaccine delivery by targeting C-type lectin receptors. Expert Rev Vaccines. 2008;7(7):1005–1018.
  • Tang CK, Sheng KC, Esparon SE, et al. Molecular basis of improved immunogenicity in DNA vaccination mediated by a mannan based carrier. Biomaterials. 2009;30(7):1389–1400.
  • Tang CK, Sheng KC, Pouniotis D, et al. Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine. 2008;26(31):3827–3834.
  • Xiang SD, Selomulya C, Ho J, et al. Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(3):205–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.