698
Views
0
CrossRef citations to date
0
Altmetric
Review

Chlamydia trachomatis vaccine development – a view on the current challenges and how to move forward

, &
Pages 1555-1567 | Received 02 Jun 2022, Accepted 19 Aug 2022, Published online: 05 Sep 2022

References

  • Moulder JW. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991;55(1):143–190.
  • McCormack WM, Benes S. Human chlamydial infections. Cutis. 1981;28(6):596–606.
  • Nunes A, Gomes JP. Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol. 2014;23:49–64.
  • Abraham S, Juel HB, Bang P, et al., Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2019. 19(10): 1091–1100.
  • Jordan S, Nelson D, Geisler W. Chlamydia trachomatis Infections. In: Tan M, Hegemann J, Sütterlin C, editors. Chlamydia biology: from genome to disease 2020; Caister Academic Press, 1–30. doi:10.21775/9781912530281.01.
  • de Vrieze NH, de Vries HJ, de Vrieze NHN, et al. Lymphogranuloma venereum among men who have sex with men an epidemiological and clinical review. Expert Rev Anti Infect Ther. 2014;12(6):697–704.
  • Stoner BP, Cohen SE. Lymphogranuloma venereum 2015: clinical presentation, diagnosis, and Treatment. Clin Infect Dis. 2015;61(8):S865–873.
  • Rowley J, Vander Hoorn S, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548–562.
  • Torrone EA, Morrison CS, Chen PL, et al. Prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: an individual participant data meta-analysis of 18 HIV prevention studies. Plos Med. 2018;15(2):e1002511.
  • Torrone EA, Morrison CS, Chen PL, et al. Correction: prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: an individual participant data meta-analysis of 18 HIV prevention studies. PLoS Med. 2018;15(6):e1002608.
  • World Health Organization. World report on vision. WHO (Ed.^(Eds) (WHO, 2019)
  • World Health Organization. WHO Alliance for the Global elimination of trachoma by 2020: progress report, 2019. WHO, 2020.
  • Marks M, Bottomley C, Tome H, et al. Mass drug administration of azithromycin for trachoma reduces the prevalence of genital Chlamydia trachomatis infection in the Solomon Islands. Sex Transm Infect. 2016;92(4):261–265.
  • Martin DL, Bid R, Sandi F, et al. Serology for trachoma surveillance after cessation of mass drug administration. PLoS Negl Trop Dis. 2015;9(2):e0003555.
  • Migchelsen SJ, Sepúlveda N, Martin DL, et al. Serology reflects a decline in the prevalence of trachoma in two regions of The Gambia. Sci Rep. 2017;7(1):15040.
  • European Centre for Diseases Prevention and Control. Lymphogranuloma venereum annual epidemiological report for 2018. (ECDC, 2020)
  • Witkin SS, Minis E, Athanasiou A, et al. Chlamydia trachomatis: the persistent pathogen. Clin Vaccine Immunol. 2017;24(10). DOI:10.1128/CVI.00203-17
  • Hafner LM. Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections. Contraception. 2015;92(2):108–115.
  • de la Maza LM, Darville TL, Pal S, et al. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines. 2021;20(4):421–435.
  • Simons JL, McKenzie JS, Wright NC, et al. Chlamydia prevalence by age and correlates of infection among pregnant women. Sex Transm Dis. 2021;48(1):37–41.
  • Mabey DC, Hu V, Bailey RL, et al. Towards a safe and effective chlamydial vaccine: lessons from the eye. Vaccine. 2014;32(14):1572–1578.
  • de la Maza LM Pal S, Olsen AW. Chlamydia vaccines. In: Tan M, Hegemann JH, Sütterlin C, editors. Chlamydia biology: from genome to disease. Caister Academic Press; 2020. p. 339–384 doi:10.21775/9781912530281.15.
  • Davies B, Turner KME, Frølund M, et al. Risk of reproductive complications following chlamydia testing: a population-based retrospective cohort study in Denmark. Lancet Infect Dis. 2016;16(9):1057–1064.
  • Reekie J, Donovan B, Guy R, et al. Risk of ectopic pregnancy and tubal infertility following gonorrhea and chlamydia infections. Clin Infect Dis. 2019;69(9):1621–1623.
  • Reekie J, Donovan B, Guy R, et al. Risk of pelvic inflammatory disease in relation to chlamydia and gonorrhea testing, repeat testing, and positivity: a population-based cohort study. Clin Infect Dis. 2018;66(3):437–443.
  • den Heijer CDJ, Hoebe C, Driessen JHM, et al. Chlamydia trachomatis and the risk of pelvic inflammatory disease, ectopic pregnancy, and female infertility: a retrospective cohort study among primary care patients. Clin Infect Dis. 2019;69(9):1517–1525.
  • Hoenderboom BM, van Benthem BHB, van Bergen J, et al. Relation between Chlamydia trachomatis infection and pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility in a Dutch cohort of women previously tested for chlamydia in a chlamydia screening trial. Sex Transm Infect. 2019;95(4):300–306.
  • Hoenderboom BM, van Bergen J, Dukers-Muijrers N, et al. Pregnancies and time to pregnancy in women with and without a previous Chlamydia trachomatis infection. Sex Transm Dis. 2020;47(11):739–747.
  • Haggerty CL, Gottlieb SL, Taylor BD, et al. Risk of sequelae after chlamydia trachomatis genital infection in women. J Infect Dis. 2010;201 Suppl 2(S2):S134–155.
  • Price MJ, Ades AE, Soldan K, et al. The natural history of Chlamydia trachomatis infection in women: a multi-parameter evidence synthesis. Health Technol Assess. 2016;20(22):1–250.
  • Taylor HR, Burton MJ, Haddad D, et al. Trachoma. Lancet. 2014;384(9960):2142–2152.
  • Hu VH, Holland MJ, Burton MJ. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis. Plos Negl Trop Dis. 2013;7(2):e2020.
  • West SK. Milestones in the fight to eliminate trachoma. Ophthalmic Physiol Opt. 2020;40(2):66–74.
  • Olsen AW, Rosenkrands I, Holland MJ, et al. A Chlamydia trachomatis VD1-MOMP vaccine elicits cross-neutralizing and protective antibodies against C/C-related complex serovars. NPJ Vaccines. 2021;6(1):58.
  • Rank RG, Yeruva L. Hidden in plain sight: chlamydial gastrointestinal infection and its relevance to persistence in human genital infection. Infect Immun. 2014;82(4):1362–1371.
  • Rank RG, Yeruva L. An alternative scenario to explain rectal positivity in Chlamydia-infected individuals. Clin Infect Dis. 2015;60(10):1585–1586.
  • Jones RB, Rabinovitch RA, Katz BP, et al. Chlamydia trachomatis in the pharynx and rectum of heterosexual patients at risk for genital infection. Ann Intern Med. 1985;102(6):757–762.
  • Karlsson A, Österlund A, Forssén A. Pharyngeal Chlamydia trachomatis is not uncommon any more. Scand J Infect Dis. 2011;43(5):344–348.
  • de Vrieze NH, van Rooijen M, Schim van der Loeff MF, et al. Anorectal and inguinal lymphogranuloma venereum among men who have sex with men in Amsterdam, The Netherlands: trends over time, symptomatology and concurrent infections. Sex Transm Infect. 2013;89(7):548–552.
  • Chandra NL, Broad C, Folkard K, et al., Detection of Chlamydia trachomatis in rectal specimens in women and its association with anal intercourse: a systematic review and meta-analysis. Sex Transm Infect. 2018. 94(5): 320–326.
  • de Vrieze NH, van Rooijen M, Speksnijder AG, et al. Urethral lymphogranuloma venereum infections in men with anorectal lymphogranuloma venereum and their partners: the missing link in the current epidemic? Sex Transm Dis. 2013;40(8):607–608.
  • Janssen KJH, Wolffs P, Lucchesi M, et al. Assessment of rectal Chlamydia trachomatis viable load in women by viability-PCR. Sex Transm Infect. 2020;96(2):85–88.
  • Statens Serum Institut. Chlamydia 2018. Statens Seum Institut; 2019.
  • Zhong G, Brunham RC, de la Maza LM, et al. National institute of allergy and infectious diseases workshop report: Chlamydia vaccines: the way forward. Vaccine. 2019;37(50):7346–7354.
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47(3):401–409.
  • Russell AN, Zheng X, O’Connell CM, et al. Analysis of factors driving incident and ascending infection and the role of serum antibody in chlamydia trachomatis genital tract infection. J Infect Dis. 2016;213(4):523–531.
  • Bakshi RK, Gupta K, Jordan SJ, et al. An adaptive chlamydia trachomatis-Specific IFN-gamma-Producing CD4(+) T cell response is associated with protection against chlamydia reinfection in women. Front Immunol. 2018;9:1981.
  • Cohen CR, Koochesfahani KM, Meier AS, et al. Immunoepidemiologic profile of Chlamydia trachomatis infection: importance of heat-shock protein 60 and interferon- gamma. J Infect Dis. 2005;192(4):591–599.
  • Brunham RC, Kimani J, Bwayo J, et al. The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis. 1996;173(4):950–956.
  • Kimani J, Maclean IW, Bwayo JJ, et al. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis. 1996;173(6):1437–1444.
  • Molano M, Meijer CJ, Weiderpass E, et al. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J Infect Dis. 2005;191(6):907–916.
  • Batteiger BE, Xu F, Johnson RE, et al. Protective Immunity to Chlamydia trachomatis genital infection: evidence from human studies. J Infect Dis. 2010;201(S2):S178–189.
  • Igietseme JU. The molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide. Immunology. 1996;87(1):1–8.
  • Su H, Caldwell HD. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun. 1995;63(9):3302–3308.
  • Loomis WP, Starnbach MN. T cell responses to Chlamydia trachomatis. Curr Opin Microbiol. 2002;5(1):87–91.
  • Gondek DC, Roan NR, Starnbach MN. T cell responses in the absence of IFN-gamma exacerbate uterine infection with Chlamydia trachomatis. J Immunol. 2009;183(2):1313–1319.
  • Gondek DC, Olive AJ, Stary G, et al. CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. J Immunol. 2012;189(5):2441–2449.
  • Morrison RP. Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma interferon. Infect Immun. 2000;68(10):6038–6040.
  • Morrison SG, Morrison RP. Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4+ and CD8+ T cells. Infect Immun. 2001;69(4):2643–2649.
  • Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. Infect Immun. 2002;70(6):2741–2751.
  • Morrison RP, Feilzer K, Tumas DB. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun. 1995;63(12):4661–4668.
  • Yu H, Karunakaran KP, Kelly I, et al. Immunization with live and dead Chlamydia muridarum induces different levels of protective immunity in a murine genital tract model: correlation with MHC class II peptide presentation and multifunctional TH1 cells. J Immunol. 2011;186(6):3615–3621.
  • Johansson M, Schon K, Ward M, et al. Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect Immun. 1997;65(3):1032–1044.
  • Helble JD, Gonzalez RJ, von Andrian UH, et al. Gamma interferon is required for Chlamydia clearance but is dispensable for T cell homing to the genital tract. mBio. 2020;11(2). DOI:10.1128/mBio.00191-20
  • Johansson M, Schon K, Ward M, et al. Studies in knockout mice reveal that anti-chlamydial protection requires TH1 cells producing IFN-gamma: is this true for humans? Scand J Immunol. 1997;46(6):546–552.
  • Perry LL, Feilzer K, Caldwell HD. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J Immunol. 1997;158(7):3344–3352.
  • Rixon JA, Depew CE, McSorley SJ. Th1 cells are dispensable for primary clearance of Chlamydia from the female reproductive tract of mice. PLoS Pathog. 2022;18(2):e1010333.
  • Nguyen N, Guleed S, Olsen A, et al. Th1/Th17 T cell tissue-resident immunity increases protection, but is not required in a vaccine strategy against genital infection with Chlamydia trachomatis. Front Immunol. 2021;12:790463.
  • Nguyen N, Olsen AW, Lorenzen E, et al. Parenteral vaccination protects against transcervical infection with Chlamydia trachomatis and generate tissue-resident T cells post-challenge. NPJ Vaccines. 2020;5(7). DOI:10.1038/s41541-020-0157-x.
  • Vicetti Miguel RD, Quispe Calla NE, Pavelko SD, et al. Intravaginal Chlamydia trachomatis challenge infection elicits TH1 and TH17 immune responses in mice that promote pathogen clearance and genital tract damage. Plos One. 2016;11(9):e0162445.
  • Andrew DW, Cochrane M, Schripsema JH, et al. The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization. Plos One. 2013;8(9):e76664.
  • Bagri P, Anipindi VC, Nguyen PV, et al. Novel role for interleukin-17 in enhancing type 1 helper T cell immunity in the female genital tract following mucosal herpes simplex virus 2 vaccination. J Virol. 2017;91(23). DOI:10.1128/JVI.01234-17
  • Scurlock AM, Frazer LC, Andrews CWsJr., et al. Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect Immun. 2011;79(3):1349–1362.
  • O’Meara CP, Armitage CW, Harvie MC, et al. Immunity against a Chlamydia infection and disease may be determined by a balance of IL-17 signaling. Immunol Cell Biol. 2014;92(3):287–297.
  • Liu JZ, Pezeshki M, Raffatellu M. Th17 cytokines and host-pathogen interactions at the mucosa: dichotomies of help and harm. Cytokine. 2009;48(1–2):156–160.
  • Lu C, Zeng H, Li Z, et al. Protective immunity against mouse upper genital tract pathology correlates with high IFNgamma but low IL-17 T cell and anti-secretion protein antibody responses induced by replicating chlamydial organisms in the airway. Vaccine. 2012;30(2):475–485.
  • Frazer LC, Scurlock AM, Zurenski MA, et al. IL-23 induces IL-22 and IL-17 production in response to Chlamydia muridarum genital tract infection, but the absence of these cytokines does not influence disease pathogenesis. Am J Reprod Immunol. 2013;70(6):472–484.
  • Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8(4):369–377.
  • Roan NR, Starnbach MN. Immune-mediated control of Chlamydia infection. Cell Microbiol. 2008;10(1):9–19.
  • Olsen AW, Lorenzen EK, Follmann F, et al. A polyprotein vaccine promotes both strong Th1 and neutralizing antibody responses and confers efficient protection against genital C. trachomatis infection in mice and pigs. Thirteenth International Symposium on Human Chlamydial Infections editor, 2014.
  • Olsen AW, Follmann F, Erneholm K, et al. Protection against chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the major outer membrane protein. J Infect Dis. 2015;212(6):978–989.
  • Johnson RM, Brunham RC. Tissue-Resident T cells as the central paradigm of Chlamydia immunity. Infect Immun. 2016;84(4):868–873.
  • Sheridan BS, Lefrancois L. Intraepithelial lymphocytes: to serve and protect. Curr Gastroenterol Rep. 2010;12(6):513–521.
  • Konjar S, Ferreira C, Blankenhaus B, et al. Intestinal barrier interactions with specialized CD8 T cells. Front Immunol. 2017;8:1281.
  • Freeman ML, Sheridan BS, Bonneau RH, et al. Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol. 2007;179(1):322–328.
  • Orr MT, Mathis MA, Lagunoff M, et al. CD8 T cell control of HSV reactivation from latency is abrogated by viral inhibition of MHC class I. Cell Host Microbe. 2007;2(3):172–180.
  • Kim SK, Angevine M, Demick K, et al. Induction of HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein of Chlamydia trachomatis in human genital tract infections. J Immunol. 1999;162(11):6855–6866.
  • Tvinnereim A, Wizel B. CD8+ T cell protective immunity against Chlamydia pneumoniae includes an H2-M3-restricted response that is largely CD4+ T cell-independent. J Immunol. 2007;179(6):3947–3957.
  • Wizel B, Starcher BC, Samten B, et al. Multiple Chlamydia pneumoniae antigens prime CD8+ Tc1 responses that inhibit intracellular growth of this vacuolar pathogen. J Immunol. 2002;169(5):2524–2535.
  • Fling SP, Sutherland RA, Steele LN, et al. CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc Natl Acad Sci U S A. 2001;98(3):1160–1165.
  • Gervassi AL, Grabstein KH, Probst P, et al. Human CD8+ T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis. J Immunol. 2004;173(11):6905–6913.
  • Starnbach MN, Loomis WP, Ovendale P, et al. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. J Immunol. 2003;171(9):4742–4749.
  • Murthy AK, Li W, Chaganty BK, et al. Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect Immun. 2011;79(7):2928–2935.
  • Vlcek KR, Li W, Manam S, et al. The contribution of Chlamydia-specific CD8(+) T cells to upper genital tract pathology. Immunol Cell Biol. 2016;94(2):208–212.
  • Igietseme JU, He Q, Joseph K, et al. Role of T lymphocytes in the pathogenesis of Chlamydia disease. J Infect Dis. 2009;200(6):926–934.
  • Yu H, Lin H, Xie L, et al. Chlamydia muridarum induces pathology in the female upper genital tract via distinct mechanisms. Infect Immun. 2019;87(8). DOI:10.1128/IAI.00145-19.
  • Magee DM, Williams DM, Smith JG, et al. Role of CD8 T cells in primary Chlamydia infection. Infect Immun. 1995;63(2):516–521.
  • Olivares-Zavaleta N, Whitmire WM, Kari L, et al. CD8+ T cells define an unexpected role in live-attenuated vaccine protective immunity against Chlamydia trachomatis infection in macaques. J Immunol. 2014;192(10):4648–4654.
  • Lijek RS, Helble JD, Olive AJ, et al. Pathology after Chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations. Proc Natl Acad Sci U S A. 2018;115(9):2216–2221.
  • Rank RG, Batteiger BE. Protective role of serum antibody in immunity to chlamydial genital infection. Infect Immun. 1989;57(1):299–301.
  • Moore T, Ananaba GA, Bolier J, et al. Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology. 2002;105(2):213–221.
  • Moore T, Ekworomadu CO, Eko FO, et al. Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J Infect Dis. 2003;188(4):617–624.
  • Morrison SG, Morrison RP. The protective effect of antibody in immunity to murine chlamydial genital tract reinfection is independent of immunoglobulin A. Infect Immun. 2005;73(9):6183–6186.
  • Morrison SG, Su H, Caldwell HD, et al. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infect Immun. 2000;68(12):6979–6987.
  • Naglak EK, Morrison SG, Morrison RP. Neutrophils are central to antibody-mediated protection against genital chlamydia. Infect Immun. 2017;85(10). DOI:10.1128/IAI.00409-17
  • Farris CM, Morrison SG, Morrison RP. CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun. 2010;78(10):4374–4383.
  • O’Meara CP, Armitage CW, Kollipara A, et al. Induction of partial immunity in both males and females is sufficient to protect females against sexual transmission of Chlamydia. Mucosal Immunol. 2016;9(4):1076–1088.
  • Olsen AW, Lorenzen EK, Rosenkrands I, et al. Protective effect of vaccine promoted neutralizing antibodies against the intracellular pathogen chlamydia trachomatis. Front Immunol. 2017;8:1652.
  • Cotter TW, Meng Q, Shen ZL, et al. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect Immun. 1995;63(12):4704–4714.
  • Pal S, Theodor I, Peterson EM, et al. Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine. 1997;15(5):575–582.
  • Zhang Q, Huang Y, Gong S, et al. In vivo and ex vivo imaging reveals a long-lasting chlamydial infection in the mouse gastrointestinal tract following genital tract inoculation. Infect Immun. 2015;83(9):3568–3577.
  • Perry LL, Hughes S. Chlamydial colonization of multiple mucosae following infection by any mucosal route. Infect Immun. 1999;67(7):3686–3689.
  • Gratrix J, Singh AE, Bergman J, et al. Evidence for increased Chlamydia case finding after the introduction of rectal screening among women attending 2 Canadian sexually transmitted infection clinics. Clin Infect Dis. 2015;60(3):398–404.
  • Rank RG, Sanders MM. Pathogenesis of endometritis and salpingitis in a Guinea pig model of chlamydial genital infection. Am J Pathol. 1992;140(4):927–936.
  • Morrison SG, Morrison RP. In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect Immun. 2000;68(5):2870–2879.
  • Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–16736.
  • Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–977.
  • Bax CJ, Quint KD, Peters RP, et al. Analyses of multiple-site and concurrent Chlamydia trachomatis serovar infections, and serovar tissue tropism for urogenital versus rectal specimens in male and female patients. Sex Transm Infect. 2011;87(6):503–507.
  • He C, Xu Y, Huo Z, et al. Regulation of Chlamydia spreading from the small intestine to the large intestine via an immunological barrier. Immunol Cell Biol. 2021;99(6):611–621.
  • Shin H, Iwasaki A. Tissue-resident memory T cells. Immunol Rev. 2013;255(1):165–181.
  • Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity. 2014;41(6):886–897.
  • Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans. Sci Immunol. 2019;4(34). DOI:10.1126/sciimmunol.aas9673
  • Stary G, Olive A, Radovic-Moreno AF, et al. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015;348(6241):aaa8205.
  • Shillova N, Howe SE, Hyseni B, et al. Chlamydia-Specific IgA secretion in the female reproductive tract induced via per-oral immunization confers protection against primary chlamydia challenge. Infect Immun. 2020;89(1). DOI:10.1128/IAI.00413-20
  • Shin HN, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature. 2012;491(7424):463–+.
  • Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science. 2014;346(6205):93–98.
  • Pal S, Cruz-Fisher MI, Cheng C, et al. Vaccination with the recombinant major outer membrane protein elicits long-term protection in mice against vaginal shedding and infertility following a Chlamydia muridarum genital challenge. NPJ Vaccines. 2020;5(1):90.
  • Wern JE, Sorensen MR, Olsen AW, et al. Simultaneous subcutaneous and intranasal administration of a CAF01-Adjuvanted chlamydia vaccine elicits elevated IgA and protective Th1/Th17 responses in the genital tract. Front Immunol. 2017;8:569.
  • Lorenzen E, Follmann F, Boje S, et al. Intramuscular priming and intranasal boosting induce strong genital immunity through secretory IgA in minipigs infected with chlamydia trachomatis. Front Immunol. 2015;6:628.
  • Carmichael JR, Pal S, Tifrea D, et al. Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. Vaccine. 2011;29(32):5276–5283.
  • Lewis DJ, Huo Z, Barnett S, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. Plos One. 2009;4(9):e6999.
  • Paes W, Brown N, Brzozowski AM, et al. Recombinant polymorphic membrane protein D in combination with a novel, second-generation lipid adjuvant protects against intra-vaginal Chlamydia trachomatis infection in mice. Vaccine. 2016;34(35):4123–4131.
  • Abraham S, Juel HB, Bang P, et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2019;19(10):1091–1100.
  • Igietseme J, Eko F, He Q, et al. Delivery of Chlamydia vaccines. Expert Opin Drug Deliv. 2005;2(3):549–562.
  • Kelly KA, Rank RG. Identification of homing receptors that mediate the recruitment of CD4 T cells to the genital tract following intravaginal infection with Chlamydia trachomatis. Infect Immun. 1997;65(12):5198–5208.
  • Rockey DD, Wang J, Lei L, et al. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev Vaccines. 2009;8(10):1365–1377.
  • Hafner LM, McNeilly C. Vaccines for Chlamydia infections of the female genital tract. Future Microbiol. 2008;3(1):67–77.
  • Pal S, Davis HL, Peterson EM, et al. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal chlamydial challenge. Infect Immun. 2002;70(9):4812–4817.
  • He Q, Martinez-Sobrido L, Eko FO, et al. Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology. 2007;122(1):28–37.
  • Li W, Murthy AK, Guentzel MN, et al. Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J Immunol. 2008;180(5):3375–3382.
  • Pal S, Theodor I, Peterson EM, et al. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect Immun. 1997;65(8):3361–3369.
  • Pal S, Fielder TJ, Peterson EM, et al. Protection against infertility in a BALB/c mouse salpingitis model by intranasal immunization with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect Immun. 1994;62(8):3354–3362
  • Tifrea DF, Pal S, Popot JL, et al. Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with Chlamydia muridarum. J Immunol. 2014;192(11):5201–5213.
  • Mutsch M, Zhou W, Rhodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med. 2004;350(9):896–903.
  • Jiang J, Liu G, Kickhoefer VA, et al. A protective vaccine against chlamydia genital infection using vault nanoparticles without an added adjuvant. Vaccines (Basel). 2017;5(1).
  • Darville T, Andrews CWsJr., Laffoon KK, et al. Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect Immun. 1997;65(8):3065–3073.
  • Howe SE, Shillova N, Konjufca V. Dissemination of Chlamydia from the reproductive tract to the gastro-intestinal tract occurs in stages and relies on Chlamydia transport by host cells. PLoS Pathog. 2019;15(12):e1008207.
  • Cotter TW, Ramsey KH, Miranpuri GS, et al. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect Immun. 1997;65(6):2145–2152.
  • Yeruva L, Spencer N, Bowlin AK, et al. Chlamydial infection of the gastrointestinal tract: a reservoir for persistent infection. Pathog Dis. 2013;68(3):88–95
  • Wang L, Zhu C, Zhang T, et al. Nonpathogenic colonization with chlamydia in the gastrointestinal tract as oral vaccination for inducing transmucosal protection. Infect Immun. 2018;86(2). 10.1128/IAI.00630-17.
  • Zhu C, Lin H, Tang L, et al. Oral Chlamydia vaccination induces transmucosal protection in the airway. Vaccine. 2018;36(16):2061–2068.
  • Christensen D, Bollehuus Hansen L, Leboux R, et al. A liposome-based adjuvant containing two delivery systems with the ability to induce mucosal immunoglobulin a following a parenteral immunization. ACS Nano. 2019;13(2):1116–1126.
  • Darville T, Hiltke TJ. Pathogenesis of genital tract disease due to chlamydia trachomatis. J Infect Dis. 2010;201(S2):S114–125.
  • Sowa S, Sowa J, Collier LH, et al. Trachoma vaccine field trials in The Gambia. J Hyg (Lond). 1969;67(4):699–717.
  • Wiesenfeld HC. Screening for chlamydia trachomatis infections in women. N Engl J Med. 2017;376(8):765–773.
  • Hitchings MD, Grais RF, Lipsitch M. Using simulation to aid trial design: ring-vaccination trials. Plos Negl Trop Dis. 2017;11(3):e0005470.
  • Ebola ça Suffit Ring Vaccination Trial Consortium. The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola. BMJ. 2015;351:h3740.
  • McIntosh EDG. Development of vaccines against the sexually transmitted infections gonorrhoea, syphilis, Chlamydia, herpes simplex virus, human immunodeficiency virus and Zika virus. Ther Adv Vaccines Immunother. 2020;8:2515135520923887.
  • Quinn TC, Gaydos C, Shepherd M, et al. Epidemiologic and microbiologic correlates of Chlamydia trachomatis infection in sexual partnerships. JAMA. 1996;276(21):1737–1742.
  • Molina JM, Charreau I, Chidiac C, et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis. 2018;18(3):308–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.