2,072
Views
1
CrossRef citations to date
0
Altmetric
Review

Vaccine approaches for antigen capture by liposomes

, &
Pages 1022-1040 | Received 20 May 2023, Accepted 19 Oct 2023, Published online: 06 Nov 2023

References

  • Liu P, Chen G, Zhang J. A review of liposomes as a Drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. doi:10.3390/molecules27041372
  • Badiee A, Khamesipour A, Samiei A, et al. The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen. Exp Parasitol. 2012;132(4):403–409. doi: 10.1016/j.exppara.2012.09.001
  • Mann JF, Shakir E, Carter KC, et al. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine. 2009;27(27):3643–3649. doi:10.1016/j.vaccine.2009.03.040
  • Ogue S, Takahashi Y, Onishi H, et al. Preparation of double liposomes and their efficiency as an oral vaccine carrier. Biol Pharm Bull. 2006;29(6):1223–1228. doi:10.1248/bpb.29.1223
  • Fries LF, Gordon DM, Richards RL, et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci U S A. 1992;89(1):358–362. doi: 10.1073/pnas.89.1.358
  • Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134. doi:10.1016/j.jconrel.2012.03.020
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(4):12. doi: 10.3390/pharmaceutics9020012
  • Monie A, Hung CF, Roden R, et al. Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics. 2008;2(1):97–105.
  • Harper DM, DeMars LR. HPV vaccines - a review of the first decade. Gynecol Oncol. 2017;146(1):196–204. doi:10.1016/j.ygyno.2017.04.004
  • Singh G, Song S, Choi E, et al. Recombinant zoster vaccine (Shingrix(®)): a new option for the prevention of herpes zoster and postherpetic neuralgia. Korean J Pain. 2020;33(3):201–207. doi:10.3344/kjp.2020.33.3.201
  • Chatzikleanthous D, O’Hagan DT, Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and Antigens: toward multicomponent vaccines. Mol Pharmaceut. 2021;18(8):2867–2888. doi:10.1021/acs.molpharmaceut.1c00447
  • Raz A, Bucana C, Fogler WE, et al. Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res. 1981;41(2):487–494.
  • Hsu MJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system: II. Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta, Mol Cell Res. 1982;720(4):411–419. doi:10.1016/0167-4889(82)90120-3
  • Allen TM, Austin GA, Chonn A, et al. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta - Biomembr. 1991;1061(1):56–64. doi:10.1016/0005-2736(91)90268-D
  • Goronzy JJ, Weyand CM. T-cell co-stimulatory pathways in autoimmunity. Arthritis Res Ther. 2008;10(1):S3. doi:10.1186/ar2414
  • Lumsden JM, Williams JA, Hodes RJ. Differential requirements for expression of CD80/86 and CD40 on B cells for T-Dependent antibody responses in vivo. J Immunol. 2003;170(2):781–787. doi:10.4049/jimmunol.170.2.781
  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–242. doi:10.1038/nri3405
  • Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions. Cell. 2019;177(3):524–540. doi:10.1016/j.cell.2019.03.016
  • Ragupathi G, Gardner JR, Livingston PO, et al. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines. 2011;10(4):463–470. doi:10.1586/erv.11.18
  • Wang P. Natural and synthetic saponins as vaccine adjuvants. Vaccines. 2021;9(3):222. doi:10.3390/vaccines9030222
  • Beck Z, Matyas GR, Alving CR. Detection of liposomal cholesterol and monophosphoryl lipid a by QS-21 saponin and limulus polyphemus amebocyte lysate. Biochim Biophys Acta. 2015;1848(3):775–780. doi:10.1016/j.bbamem.2014.12.005
  • Lacaille-Dubois MA. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: a review. Phytomedicine. 2019;60:152905. doi:10.1016/j.phymed.2019.152905
  • Genito CJ, Beck Z, Phares TW, et al. Liposomes containing monophosphoryl lipid a and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013. Vaccine. 2017;35(31):3865–3874. doi: 10.1016/j.vaccine.2017.05.070
  • He X, Zhou S, Huang W-C, et al. A potent cancer vaccine adjuvant system for particleization of short, synthetic CD8+ T cell epitopes. ACS Nano. 2021;15(3):4357–4371. doi: 10.1021/acsnano.0c07680
  • Alving CR, Rao M, Steers NJ, et al. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines. 2012;11(6):733–744. doi:10.1586/erv.12.35
  • Wang YQ, Bazin-Lee H, Evans JT, et al. MPL adjuvant contains competitive antagonists of human TLR4. Front Immunol. 2020;11:577823. doi:10.3389/fimmu.2020.577823
  • Schulke S, Flaczyk A, Vogel L, et al. MPLA shows attenuated pro-inflammatory properties and diminished capacity to activate mast cells in comparison with LPS. Allergy. 2015;70(10):1259–1268. doi: 10.1111/all.12675
  • Watanabe S, Kumazawa Y, Inoue J, et al. Liposomal lipopolysaccharide initiates TRIF-Dependent signaling pathway Independent of CD14. PLoS One. 2013;8(4):e60078. doi:10.1371/journal.pone.0060078
  • Alving CR, Peachman KK, Matyas GR, et al. Army liposome formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines. 2020;19(3):279–292. doi:10.1080/14760584.2020.1745636
  • Jobe O, Kim J, Pinto DO, et al. Army liposome formulation containing QS-21 render human monocyte-derived macrophages less permissive to HIV-1 infection by upregulating APOBEC3A. Sci Rep. 2022;12(1):7570. doi: 10.1038/s41598-022-11230-8
  • Bauer S, Kirschning CJ, Häcker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Nat Acad Sci. 2001;98(16):9237–9242. doi: 10.1073/pnas.161293498
  • Valencia-Hernandez AM, Zillinger T, Ge Z, et al. Complexing CpG adjuvants with cationic liposomes enhances vaccine-induced formation of liver T(RM) cells. Vaccine. 2023;41(5):1094–1107. doi: 10.1016/j.vaccine.2022.12.047
  • Badiee A, Jaafari MR, Samiei A, et al. Coencapsulation of CpG oligodeoxynucleotides with recombinant leishmania major stress-inducible protein 1 in liposome enhances immune response and protection against leishmaniasis in immunized BALB/c mice. Clin Vaccine Immunol. 2008;15(4):668–674. doi:10.1128/CVI.00413-07
  • Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76. doi:10.1186/s13045-019-0760-3
  • Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials. 2021;268:120601. doi:10.1016/j.biomaterials.2020.120601
  • Kasturi SP, Rasheed MAU, Havenar-Daughton C, et al. 3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope-specific plasma cells and humoral immunity in nonhuman primates. Sci Immunol. 2020;5(48). doi: 10.1126/sciimmunol.abb1025
  • Abhyankar MM, Orr MT, Lin S, et al. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for entamoeba histolytica. NPJ Vaccines. 2018;3(1):22. doi: 10.1038/s41541-018-0060-x
  • Short KK, Miller SM, Walsh L, et al. Co-encapsulation of synthetic lipidated TLR4 and TLR7/8 agonists in the liposomal bilayer results in a rapid, synergistic enhancement of vaccine-mediated humoral immunity. J Control Release. 2019;315:186–196. doi: 10.1016/j.jconrel.2019.10.025
  • King LA, Lameris R, de Gruijl TD, et al. CD1d-invariant natural killer T cell-based cancer immunotherapy: α-galactosylceramide and beyond. Front Immunol. 2018;9:1519. doi:10.3389/fimmu.2018.01519
  • Wang J, Wen Y, Zhou SH, et al. Self-adjuvanting lipoprotein conjugate αGalCer-RBD induces potent immunity against SARS-CoV-2 and its variants of concern. J Med Chem. 2022;65(3):2558–2570. doi: 10.1021/acs.jmedchem.1c02000
  • Yin X-G, Lu J, Wang J, et al. Synthesis and evaluation of liposomal anti-GM3 cancer vaccine candidates covalently and noncovalently adjuvanted by αGalCer. J Med Chem. 2021;64(4):1951–1965. doi: 10.1021/acs.jmedchem.0c01186
  • Li X, Fujio M, Imamura M, et al. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Nat Acad Sci. 2010;107(29):13010–13015. doi: 10.1073/pnas.1006662107
  • Zhang F, Stephan SB, Ene CI, et al. Nanoparticles that reshape the tumor milieu create a therapeutic Window for effective T-cell therapy in solid malignancies. Cancer Res. 2018;78(13):3718–3730. doi:10.1158/0008-5472.CAN-18-0306
  • Yankowski C, Wirblich C, Kurup D, et al. Inactivated rabies-vectored SARS-CoV-2 vaccine provides long-term immune response unaffected by vector immunity. NPJ Vaccines. 2022;7(1):110. doi:10.1038/s41541-022-00532-7
  • Kirby DJ, Rosenkrands I, Agger EM, et al. Liposomes act as stronger sub-unit vaccine adjuvants when compared to microspheres. J Drug Target. 2008;16(7):543–554. doi:10.1080/10611860802228558
  • Lu P, Guerin DJ, Lin S, et al. Immunoprofiling correlates of protection against SHIV infection in adjuvanted HIV-1 pox-protein vaccinated rhesus macaques. Front Immunol. 2021;12:625030. doi: 10.3389/fimmu.2021.625030
  • Barrientos RC, Bow EW, Whalen C, et al. Novel vaccine that blunts fentanyl effects and sequesters ultrapotent fentanyl analogues. Mol Pharm. 2020;17(9):3447–3460. doi: 10.1021/acs.molpharmaceut.0c00497
  • Richards RL, Hayre MD, Hockmeyer WT, et al. Liposomes, lipid A, and aluminum hydroxide enhance the immune response to a synthetic malaria sporozoite antigen. Infect Immun. 1988;56(3):682–686. doi:10.1128/iai.56.3.682-686.1988
  • Om K, Paquin-Proulx D, Montero M, et al. Adjuvanted HIV-1 vaccine promotes antibody-dependent phagocytic responses and protects against heterologous SHIV challenge. PLOS Pathog. 2020;16(9):e1008764. doi: 10.1371/journal.ppat.1008764
  • Calderón L, Facenda E, Machado L, et al. Modulation of the specific allergic response by mite allergens encapsulated into liposomes. Vaccine. 2006;24 Suppl 2:S2-38–39. doi: 10.1016/j.vaccine.2005.01.112
  • Rao M, Onkar S, Peachman KK, et al. Liposome-encapsulated human immunodeficiency virus-1 gp120 induces potent V1V2-specific antibodies in humans. J Infect Dis. 2018;218(10):1541–1550. doi: 10.1093/infdis/jiy348
  • Beck Z, Torres OB, Matyas GR. et al. Immune response to antigen adsorbed to aluminum hydroxide particles: effects of co-adsorption of ALF or ALFQ adjuvant to the aluminum-antigen complex. J Control Release. 2018;275:12–19. doi: 10.1016/j.jconrel.2018.02.006
  • Komla E, Torres OB, Jalah R, et al. Effect of preexisting immunity to tetanus toxoid on the efficacy of tetanus toxoid-conjugated heroin vaccine in mice. Vaccines (Basel). 2021;9(6):573. doi: 10.3390/vaccines9060573
  • Auderset F, Belnoue E, Mastelic-Gavillet B, et al. A TLR7/8 agonist-including DOEPC-Based cationic liposome formulation mediates its adjuvanticity through the sustained recruitment of highly activated monocytes in a type I IFN-Independent but NF-κB-Dependent manner. Front Immunol. 2020;11:580974. doi:10.3389/fimmu.2020.580974
  • Lal H, Cunningham AL, Godeaux O, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015;372(22):2087–2096. doi: 10.1056/NEJMoa1501184
  • Tomori Y, Iijima N, Hinuma S, et al. Morphological analysis of Trafficking and Processing of anionic and cationic liposomes in cultured cells. Acta Histochem Cytochem. 2018;51(2):81–92. doi: 10.1267/ahc.17021
  • Nagy NA, Castenmiller C, Vigario FL, et al. Uptake kinetics of liposomal formulations of differing charge influences development of in vivo dendritic cell immunotherapy. J Pharm Sci. 2022;111(4):1081–1091. doi: 10.1016/j.xphs.2022.01.022
  • Luo G, Yang Q, Yao B, et al. Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges. Int J Nanomedicine. 2019;14:1359–1383. doi: 10.2147/IJN.S189935
  • Su X, Fricke J, Kavanagh DG, et al. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm. 2011;8(3):774–787. doi:10.1021/mp100390w
  • Hollmann A, Delfederico L, Glikmann G, et al. Characterization of liposomes coated with S-layer proteins from lactobacilli. Biochim Biophys Acta - Biomembr. 2007;1768(3):393–400. doi:10.1016/j.bbamem.2006.09.009
  • Chatzikleanthous D, Schmidt ST, Buffi G, et al. Design of a novel vaccine nanotechnology-based delivery system comprising CpGODN-protein conjugate anchored to liposomes. J Control Release. 2020;323:125–137. doi: 10.1016/j.jconrel.2020.04.001
  • Yanasarn N, Sloat BR, Cui Z. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol Pharm. 2011;8(4):1174–1185. doi: 10.1021/mp200016d
  • Orr MT, Fox CB, Baldwin SL, et al. Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. J Control Release. 2013;172(1):190–200. doi: 10.1016/j.jconrel.2013.07.030
  • Kodar K, Harper JL, McConnell MJ, et al. The mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via syk signaling. Immun Inflamm Dis. 2017;5(4):503–514. doi:10.1002/iid3.186
  • Schoenen H, Bodendorfer B, Hitchens K, et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184(6):2756–2760. doi: 10.4049/jimmunol.0904013
  • Thakur A, Andrea A, Mikkelsen H, et al. Targeting the Mincle and TLR3 receptor using the dual agonist cationic adjuvant formulation 9 (CAF09) induces humoral and polyfunctional memory T cell responses in calves. PLoS One. 2018;13(7):e0201253. doi: 10.1371/journal.pone.0201253
  • Andersen CA, Rosenkrands I, Olsen AW, et al. Novel generation mycobacterial adjuvant based on liposome-encapsulated monomycoloyl glycerol from mycobacterium bovis bacillus calmette-guérin. J Immunol. 2009;183(4):2294–2302. doi: 10.4049/jimmunol.0804091
  • Pedersen GK, Andersen P, Christensen D. Immunocorrelates of CAF family adjuvants. Semin Immunol. 2018;39:4–13. doi:10.1016/j.smim.2018.10.003
  • van Dissel JT, Joosten SA, Hoff ST, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32(52):7098–7107. doi: 10.1016/j.vaccine.2014.10.036
  • Abraham S, Juel HB, Bang P, et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2019;19(10):1091–1100. doi: 10.1016/S1473-3099(19)30279-8
  • Espinosa DA, Christensen D, Muñoz C, et al. Robust antibody and CD8(+) T-cell responses induced by P. falciparum CSP adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing immunity against experimental rodent malaria infection. NPJ Vaccines. 2017;2(1). doi: 10.1038/s41541-017-0011-y
  • Filskov J, Andersen P, Agger EM, et al. HCV p7 as a novel vaccine-target inducing multifunctional CD4+ and CD8+ T-cells targeting liver cells expressing the viral antigen. Sci Rep. 2019;9(1):14085. doi:10.1038/s41598-019-50365-z
  • Zimmermann J, Schmidt ST, Trebbien R, et al. A novel prophylaxis strategy using liposomal vaccine adjuvant CAF09b protects against influenza virus disease. Int J Mol Sci. 2022;23(3):1850. doi: 10.3390/ijms23031850
  • Vu PL, Vadakekolathu J, Idri S, et al. A mutated prostatic acid phosphatase (PAP) peptide-based vaccine induces PAP-Specific CD8(+) T cells with ex vivo cytotoxic capacities in HHDII/DR1 transgenic mice. Cancers (Basel). 2022;14(8):1970. doi: 10.3390/cancers14081970
  • van Haren SD, Pedersen GK, Kumar A, et al. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun. 2022;13(1):4234. doi: 10.1038/s41467-022-31709-2
  • Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401. doi: 10.1038/nature18300
  • Lou G, Anderluzzi G, Schmidt ST, et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection. JControlled Release. 2020;325:370–379. doi: 10.1016/j.jconrel.2020.06.027
  • Melo M, Porter E, Zhang Y, et al. Immunogenicity of RNA replicons encoding HIV env immunogens designed for self-assembly into nanoparticles. Mol Ther. 2019;27(12):2080–2090. doi: 10.1016/j.ymthe.2019.08.007
  • Hussain A, Yang H, Zhang M, et al. mRNA vaccines for COVID-19 and diverse diseases. J Control Release. 2022;345:314–333. doi: 10.1016/j.jconrel.2022.03.032
  • Schoenmaker L, Witzigmann D, Kulkarni JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharmaceut. 2021;601:120586. doi: 10.1016/j.ijpharm.2021.120586
  • Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nature Rev Mater. 2021;6(12):1078–1094. doi:10.1038/s41578-021-00358-0
  • Walsh EE, Frenck RW Jr., Falsey AR, et al. Safety and immunogenicity of two RNA-Based COVID-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–2450. doi: 10.1056/NEJMoa2027906
  • Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature. 2020;586(7830):594–599. doi: 10.1038/s41586-020-2814-7
  • Crommelin DJA, Anchordoquy TJ, Volkin DB, et al. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021;110(3):997–1001. doi:10.1016/j.xphs.2020.12.006
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi: 10.1056/NEJMoa2035389
  • Didierlaurent AM, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16(1):55–63. doi:10.1080/14760584.2016.1213632
  • Cunningham AL, Lal H, Kovac M, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016;375(11):1019–1032. doi: 10.1056/NEJMoa1603800
  • Cunningham AL, Heineman TC, Lal H, et al. Immune responses to a recombinant glycoprotein E herpes zoster vaccine in adults aged 50 years or older. J Infect Dis. 2018;217(11):1750–1760. doi: 10.1093/infdis/jiy095
  • Kurtovic L, Atre T, Feng G, et al. Multifunctional antibodies are induced by the RTS,S malaria vaccine and associated with protection in a phase 1/2a trial. J Infect Dis. 2021;224(7):1128–1138. doi: 10.1093/infdis/jiaa144
  • Moon JE, Ockenhouse C, Regules JA, et al. A phase IIa controlled human malaria infection and immunogenicity study of RTS,S/AS01E and RTS,S/AS01B delayed fractional dose regimens in malaria-naive adults. J Infect Dis. 2020;222(10):1681–1691. doi: 10.1093/infdis/jiaa421
  • Laurens MB. RTS, S/AS01 vaccine (Mosquirix™): an overview. Human Vaccines & Immunotherapeutics. 2020;16(3):480–489. doi:10.1080/21645515.2019.1669415
  • Regules JA, Cicatelli SB, Bennett JW, et al. Fractional third and fourth dose of RTS,S/AS01 malaria Candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J Infect Dis. 2016;214(5):762–771. doi: 10.1093/infdis/jiw237
  • Minassian AM, Silk SE, Barrett JR, et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med (N Y). 2021;2(6):701–719.e719. doi: 10.1016/j.medj.2021.03.014
  • Nielsen CM, Barrett JR, Davis C, et al. Delayed boosting improves human antigen-specific ig and B cell responses to the RH5.1/AS01B malaria vaccine. JCI Insight. 2023;8(2). doi: 10.1172/jci.insight.163859
  • Burny W, Callegaro A, Bechtold V, et al. Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. Front Immunol. 2017;8:943. doi: 10.3389/fimmu.2017.00943
  • De Mot L, Bechtold V, Bol V, et al. Transcriptional profiles of adjuvanted hepatitis B vaccines display variable interindividual homogeneity but a shared core signature. Sci Transl Med. 2020;12(569). doi: 10.1126/scitranslmed.aay8618
  • Budroni S, Buricchi F, Cavallone A, et al. Antibody avidity, persistence, and response to antigen recall: comparison of vaccine adjuvants. NPJ Vaccines. 2021;6(1):78. doi: 10.1038/s41541-021-00337-0
  • Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, et al. Phosphatidylserine-liposomes promote tolerogenic features on dendritic cells in human type 1 diabetes by Apoptotic Mimicry. Front Immunol. 2018;9:253. doi: 10.3389/fimmu.2018.00253
  • Pujol-Autonell I, Serracant-Prat A, Cano-Sarabia M, et al. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLoS One. 2015;10(6):e0127057. doi: 10.1371/journal.pone.0127057
  • Miura N, Akita H, Tateshita N, et al. Modifying antigen-encapsulating liposomes with KALA facilitates MHC class I antigen presentation and enhances anti-tumor effects. Mol Ther. 2017;25(4):1003–1013. doi:10.1016/j.ymthe.2017.01.020
  • Hanson MC, Abraham W, Crespo MP, et al. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine. 2015;33(7):861–868. doi: 10.1016/j.vaccine.2014.12.045
  • Watson DS, Szoka FC Jr. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41. Vaccine. 2009;27(34):4672–4683. doi:10.1016/j.vaccine.2009.05.059
  • Fotoran WL, Santangelo R, de Miranda BNM, et al. DNA-Loaded cationic liposomes efficiently function as a vaccine against malarial proteins. Mol Ther Methods Clin Dev. 2017;7:1–10. doi:10.1016/j.omtm.2017.08.004
  • Shao S, Geng J, Ah Yi H, et al. Functionalization of cobalt porphyrin–phospholipid bilayers with his-tagged ligands and antigens. Nature Chemistry. 2015;7(5):438–446. doi: 10.1038/nchem.2236
  • Torres OB, Matyas GR, Rao M, et al. Heroin-HIV-1 (H2) vaccine: induction of dual immunologic effects with a heroin hapten-conjugate and an HIV-1 envelope V2 peptide with liposomal lipid a as an adjuvant. NPJ Vaccines. 2017;2(1):13. doi: 10.1038/s41541-017-0013-9
  • He X, Zhou S, Quinn B, et al. An in vivo screen to identify short peptide mimotopes with enhanced antitumor immunogenicity. Cancer Immunol Res. 2022;10(3):314–326. doi: 10.1158/2326-6066.CIR-21-0332
  • Huang W-C, Deng B, Lin C, et al. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nature Nanotechnol. 2018;13(12):1174–1181. doi: 10.1038/s41565-018-0271-3
  • He X, Zhou S, Dolan M, et al. Immunization with short peptide particles reveals a functional CD8 + T-cell neoepitope in a murine renal carcinoma model. J Immunother Cancer. 2021;9(12):e003101. doi: 10.1136/jitc-2021-003101
  • Warmenhoven H, Leboux R, Bethanis A, et al. Cationic liposomes bearing Bet v 1 by coiled coil-formation are hypo-allergenic and induce strong immunogenicity in mice. Front Allergy. 2022;3:1092262. doi: 10.3389/falgy.2022.1092262
  • Leboux RJT, Benne N, van Os WL, et al. High-affinity antigen association to cationic liposomes via coiled coil-forming peptides induces a strong antigen-specific CD4(+) T-cell response. Eur J Pharm Biopharm. 2021;158:96–105. doi: 10.1016/j.ejpb.2020.11.005
  • Chen W, Huang L. Induction of cytotoxic T-lymphocytes and antitumor activity by a liposomal lipopeptide vaccine. Mol Pharm. 2008;5(3):464–471. doi:10.1021/mp700126c
  • Huang WC, Deng B, Seffouh A, et al. Antibody response of a particle-inducing, liposome vaccine adjuvant admixed with a Pfs230 fragment. NPJ Vaccines. 2020;5(1):23. doi: 10.1038/s41541-020-0173-x
  • Zhou S, KOA Y, Mabrouk MT, et al. Antibody induction in mice by liposome-displayed recombinant enterotoxigenic Escherichia coli (ETEC) colonization antigens. Biomed J. 2023. doi:10.1016/j.bj.2023.03.001
  • Muhs A, Hickman DT, Pihlgren M, et al. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A. 2007;104(23):9810–9815. doi: 10.1073/pnas.0703137104
  • Bale S, Goebrecht G, Stano A, et al. Covalent linkage of HIV-1 trimers to synthetic liposomes elicits improved B cell and antibody responses. J Virol. 2017;91(16). doi: 10.1128/JVI.00443-17
  • Dubrovskaya V, Tran K, Ozorowski G, et al. Vaccination with Glycan-modified HIV NFL envelope trimer-liposomes elicits broadly neutralizing antibodies to multiple sites of vulnerability. Immunity. 2019;51(5):915–929.e917. doi: 10.1016/j.immuni.2019.10.008
  • Krupka M, Masek J, Barkocziova L, et al. The position of His-tag in recombinant OspC and application of various adjuvants affects the intensity and quality of specific antibody response after immunization of experimental mice. PLoS One. 2016;11(2):e0148497. doi: 10.1371/journal.pone.0148497
  • Szoka F Jr., Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75(9):4194–4198. doi:10.1073/pnas.75.9.4194
  • Huang H, Zhang C, Yang S, et al. The investigation of mRNA vaccines formulated in liposomes administrated in multiple routes against SARS-CoV-2. J Control Release. 2021;335:449–456. doi:10.1016/j.jconrel.2021.05.024
  • Goswami R, Chatzikleanthous D, Lou G, et al. Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS Infect Dis. 2019;5(9):1546–1558. doi: 10.1021/acsinfecdis.9b00084
  • Blakney AK, McKay PF, Yus BI, et al. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019;26(9):363–372. doi:10.1038/s41434-019-0095-2
  • Goswami R, O’Hagan DT, Adamo R, et al. Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines. Pharmaceutics. 2021;13(2):240. doi: 10.3390/pharmaceutics13020240
  • Guan HH, Budzynski W, Koganty RR, et al. Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjugate Chem. 1998;9(4):451–458. doi: 10.1021/bc970183n
  • Brgles M, Habjanec L, Halassy B, et al. Liposome fusogenicity and entrapment efficiency of antigen determine the Th1/Th2 bias of antigen-specific immune response. Vaccine. 2009;27(40):5435–5442. doi:10.1016/j.vaccine.2009.07.012
  • Salotto KE, Olson WC Jr., Pollack KE, et al. A nano-enhanced vaccine for metastatic melanoma immunotherapy. Cancer Drug Resist. 2022;5(3):829–845. doi: 10.20517/cdr.2021.132
  • Teplensky MH, Distler ME, Kusmierz CD, et al. Spherical nucleic acids as an infectious disease vaccine platform. Proc Natl Acad Sci U S A. 2022;119(14):e2119093119. doi: 10.1073/pnas.2119093119
  • Grabowska J, Stolk DA, Nijen Twilhaar MK, et al. Liposomal nanovaccine containing α-galactosylceramide and ganglioside GM3 Stimulates robust CD8+ T cell responses via CD169+ macrophages and cDC1. Vaccines (Basel). 2021;9(1):56. doi: 10.3390/vaccines9010056
  • Grabowska J, Lopez-Venegas MA, Affandi AJ, et al. CD169(+) macrophages capture and dendritic cells instruct: the interplay of the gatekeeper and the General of the immune system. Front Immunol. 2018;9:2472. doi:10.3389/fimmu.2018.02472
  • Asano K, Nabeyama A, Miyake Y, et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 2011;34(1):85–95. doi: 10.1016/j.immuni.2010.12.011
  • Affandi AJ, Grabowska J, Olesek K, et al. Selective tumor antigen vaccine delivery to human CD169(+) antigen-presenting cells using ganglioside-liposomes. Proc Natl Acad Sci U S A. 2020;117(44):27528–27539. doi: 10.1073/pnas.2006186117
  • Nijen Twilhaar MK, Czentner L, Bouma RG, et al. Incorporation of toll-like receptor ligands and inflammasome stimuli in GM3 liposomes to induce dendritic cell maturation and T cell responses. Front Immunol. 2022;13:842241. doi: 10.3389/fimmu.2022.842241
  • Krishnan L, Sad S, Patel GB, et al. The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol. 2001;166(3):1885–1893. doi:10.4049/jimmunol.166.3.1885
  • Krishnan L, Sad S, Patel GB, et al. Archaeosomes induce long-term CD8+ cytotoxic T cell response to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help. J Immunol. 2000;165(9):5177–5185. doi:10.4049/jimmunol.165.9.5177
  • Ansari MA, Zubair S, Mahmood A, et al. RD antigen based nanovaccine imparts long term protection by inducing memory response against experimental murine tuberculosis. PLoS One. 2011;6(8):e22889. doi: 10.1371/journal.pone.0022889
  • McCluskie MJ, Deschatelets L, Krishnan L. Sulfated archaeal glycolipid archaeosomes as a safe and effective vaccine adjuvant for induction of cell-mediated immunity. Hum Vaccin Immunother. 2017;13(12):2772–2779. doi:10.1080/21645515.2017.1316912
  • Stark FC, Agbayani G, Sandhu JK, et al. Simplified admix archaeal glycolipid adjuvanted vaccine and checkpoint inhibitor therapy combination enhances protection from murine melanoma. Biomedicines. 2019;7(4):91. doi: 10.3390/biomedicines7040091
  • Nayerhoda R, Park D, Jones C, et al. Extended polysaccharide analysis within the liposomal encapsulation of polysaccharides system. Materials. 2020;13(15):3320. doi: 10.3390/ma13153320
  • Bhalla M, Nayerhoda R, Tchalla EYI, et al. Liposomal encapsulation of polysaccharides (LEPS) as an effective vaccine strategy to protect aged hosts against S. pneumoniae infection. Front Aging. 2021;2: doi: 10.3389/fragi.2021.798868
  • Ramani K, Miclea RD, Purohit VS, et al. Phosphatidylserine containing liposomes reduce immunogenicity of recombinant human factor VIII (rFVIII) in a murine model of hemophilia A**Karthik Ramani and Razvan D. Miclea contributed equally to the manuscript. J Pharmaceut sci. 2008;97(4):1386–1398. doi:10.1002/jps.21102
  • Cruz LJ, Tacken PJ, Fokkink R, et al. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials. 2011;32(28):6791–6803. doi:10.1016/j.biomaterials.2011.04.082
  • Tokatlian T, Kulp DW, Mutafyan AA, et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. Sci Rep. 2018;8(1):16527. doi: 10.1038/s41598-018-34853-2
  • van Broekhoven CL, Altin JG. The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. Biochim Biophys Acta. 2005;1716(2):104–116. doi:10.1016/j.bbamem.2005.09.003
  • Faham A, Altin JG. Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol. 2010;185(3):1744–1754. doi:10.4049/jimmunol.1000027
  • van Broekhoven CL, Parish CR, Demangel C, et al. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res. 2004;64(12):4357–4365. doi:10.1158/0008-5472.CAN-04-0138
  • Platt V, Huang Z, Cao L, et al. Influence of multivalent nitrilotriacetic acid lipid−Ligand affinity on the circulation half-life in mice of a liposome-attached His6-protein. Bioconjugate Chem. 2010;21(5):892–902. doi:10.1021/bc900448f
  • Lovell JF, Baik YO, Choi SK, et al. Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Med. 2022;20(1):462. doi: 10.1186/s12916-022-02661-1
  • Ghaffar KA, Marasini N, Giddam AK, et al. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group a streptococcus. Acta Biomater. 2016;41:161–168. doi: 10.1016/j.actbio.2016.04.012
  • Rafii MS, Sol O, Mobley WC, et al. Safety, tolerability, and immunogenicity of the ACI-24 vaccine in adults with Down syndrome: a phase 1b randomized clinical trial. JAMA Neurol. 2022;79(6):565–574. doi: 10.1001/jamaneurol.2022.0983
  • Azuar A, Madge HYR, Boer JC, et al. Poly(hydrophobic amino acids) and liposomes for delivery of vaccine against group a Streptococcus. Vaccines (Basel). 2022;10(8):1212. doi: 10.3390/vaccines10081212