946
Views
0
CrossRef citations to date
0
Altmetric
Review

The important lessons lurking in the history of meningococcal epidemiology

&
Pages 445-462 | Received 16 Aug 2023, Accepted 08 Mar 2024, Published online: 04 Apr 2024

References

  • Rosenstein NE, Perkins BA, Stephens DS, et al. Meningococcal disease. N Engl J Med. 2001;344(18):1378–1388. doi: 10.1056/NEJM200105033441807
  • Olbrich KJ, Muller D, Schumacher S, et al. Systematic review of invasive meningococcal disease: sequelae and quality of life impact on patients and their caregivers. Infect Dis Ther. 2018;7(4):421–438. doi: 10.1007/s40121-018-0213-2
  • World Health Organization. Meningitis [Internet]. [cited 2023 Feb 14]. Available from: https://www.who.int/news-room/fact-sheets/detail/meningitis
  • Mbaeyi S, Duffy J, McNamara LA. Meningococcal disease. In: Hall E, Wodi A, and Hamborsky J, et al., editors. Epidemiology and prevention of vaccine-preventable diseases. 14th ed. Washington, DC: Public Health Foundation; 2021. p. 207–224. https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/mening.pdf
  • Gyamfi-Brobbey G, Clark SA, Campbell H, et al. An analysis of Neisseria meningitidis strains causing meningococcal septic arthritis in England and Wales: 2010–2020. J Infect. 2022;85(4):390–396. doi: 10.1016/j.jinf.2022.07.019
  • Thompson MJ, Ninis N, Perera R, et al. Clinical recognition of meningococcal disease in children and adolescents. Lancet. 2006;367(9508):397–403. doi: 10.1016/S0140-6736(06)67932-4
  • Wang B, Santoreneos R, Giles L, et al. Case fatality rates of invasive meningococcal disease by serogroup and age: a systematic review and meta-analysis. Vaccine. 2019;37(21):2768–2782. doi: 10.1016/j.vaccine.2019.04.020
  • Deghmane AE, Taha S, Taha MK. Global epidemiology and changing clinical presentations of invasive meningococcal disease: a narrative review. Infect Dis. 2022;54(1):1–7. doi: 10.1080/23744235.2021.1971289
  • Pardo de Santayana C, Tin Tin Htar M, Findlow J, et al. Epidemiology of invasive meningococcal disease worldwide from 2010–2019: a literature review. Epidemiol Infect. 2023;151:e57. doi: 10.1017/S0950268823000328
  • World Health Organization. Defeating meningitis by 2030: a global road map [Internet]. [cited 2024 Feb 7]. Available from: https://iris.who.int/bitstream/handle/10665/342010/9789240026407-eng.pdf?sequence=1
  • Rouphael NG, Stephens DS. Neisseria meningitidis: biology, microbiology, and epidemiology. Methods Mol Bio. 2012;799:1–20. doi: 10.1007/978-1-61779-346-2_1
  • Christensen H, May M, Bowen L, et al. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(12):853–861. doi: 10.1016/S1473-3099(10)70251-6
  • Clark SA, Borrow R. Herd protection against meningococcal disease through vaccination. Microorganisms. 2020;8(11):1675. doi: 10.3390/microorganisms8111675
  • Balmer P, Burman C, Serra L, et al. Impact of meningococcal vaccination on carriage and disease transmission: a review of the literature. Hum Vaccin Immunother. 2018;14(5):1118–1130. doi: 10.1080/21645515.2018.1454570
  • Bartley SN, Mowlaboccus S, Mullally CA, et al. Acquisition of the capsule locus by horizontal gene transfer in Neisseria meningitidis is often accompanied by the loss of UDP-GalNAc synthesis. Sci Rep. 2017;7(1):44442. doi: 10.1038/srep44442
  • Clemence MEA, Harrison OB, Maiden MCJ. Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Res. 2019;4:99. doi: 10.12688/wellcomeopenres.15333.2
  • Cartwright K. Introduction and historical aspects. In: Cartwright K, editor. Meningococcal disease. Chichester, NY: J. Wiley & Sons; 1995. p. 1–20.
  • da Silva RAG, Karlyshev AV, Oldfield NJ, et al. Variant signal peptides of vaccine antigen, FHbp, impair processing affecting surface localization and antibody-mediated killing in most meningococcal isolates. Front Microbiol. 2019;10:2847. doi: 10.3389/fmicb.2019.02847
  • Harrison OB, Claus H, Jiang Y, et al. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis. 2013;19(4):566–573. doi: 10.3201/eid1904.111799
  • Coureuil M, Join-Lambert O, Lécuyer H, et al. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence. 2012;3(2):164–172. doi: 10.4161/viru.18639
  • Tzeng YL, Stephens DS. A narrative review of the W, X, Y, E, and NG of meningococcal disease: emerging capsular groups, pathotypes, and global control. Microorganisms. 2021;9:519. doi: 10.3390/microorganisms9030519
  • Peak IR, Chen A, Jen FE, et al. Neisseria meningitidis lacking the major porins PorA and PorB is viable and modulates apoptosis and the oxidative burst of neutrophils. J Proteome Res. 2016;15(8):2356–2365. doi: 10.1021/acs.jproteome.5b00938
  • Pathan N, Faust SN, Levin M. Pathophysiology of meningococcal meningitis and septicaemia. Arch Dis Child. 2003;88(7):601–607. doi: 10.1136/adc.88.7.601
  • Parrow NL, Fleming RE, Minnick MF, et al. Sequestration and scavenging of iron in infection. Infect Immun. 2013;81(10):3503–3514. doi: 10.1128/IAI.00602-13
  • Shortt GA, Ren X, Otto BM, et al. The Neisseria meningitidis iron acquisition protein HpuA moonlights as an adhesin and inhibits host cell migration. bioRxiv. Preprint posted online Feb 25, 2023. doi: 10.1101/2022.02.25.481912
  • Jordan PW, Saunders NJ, Fox D. Host iron binding proteins acting as niche indicators for Neisseria meningitidis. PLoS One. 2009;4(4):e5198. doi: 10.1371/journal.pone.0005198
  • Granoff DM, Welsch JA, Ram S. Binding of complement factor H (fH) to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera. Infect Immun. 2009;77(2):764–769. doi: 10.1128/IAI.01191-08
  • Hill DJ, Griffiths NJ, Borodina E, et al. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin Sci (Lond). 2010;118(9):547–564. doi: 10.1042/CS20090513
  • Lewis LA, Ngampasutadol J, Wallace R, et al. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog. 2010;6(7):e1001027. doi: 10.1371/journal.ppat.1001027
  • Clark SA, Lekshmi A, Lucidarme J, et al. Differences between culture & non-culture confirmed invasive meningococci with a focus on factor H-binding protein distribution. J Infect. 2016;73(1):63–70. doi: 10.1016/j.jinf.2016.03.012
  • Findlow J, Bayliss CD, Beernink PT, et al. Broad vaccine protection against Neisseria meningitidis using factor H binding protein. Vaccine. 2020;38(49):7716–7727. doi: 10.1016/j.vaccine.2020.08.031
  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.Org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1
  • McNeil LK, Donald RGK, Gribenko A, et al. Predicting the susceptibility of meningococcal serogroup B isolates to bactericidal antibodies elicited by bivalent rLP2086, a novel prophylactic vaccine. MBio. 2018;9(2):e00036–00018. doi: 10.1128/mBio.00036-18
  • Nguyen N, Ashong D. Neisseria Meningitidis. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022. https://pubmed.ncbi.nlm.nih.gov/31751039/
  • Diggle MA, Clarke SC. Molecular methods for the detection and characterization of Neisseria meningitidis. Expert Rev Mol Diagn. 2006;6(1):79–87. doi: 10.1586/14737159.6.1.79
  • Castillo D, Harcourt B, Hatcher C, et al. Primary culture and presumptive identification of Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. In: Mayer L, editor. Laboratory methods for the diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae: WHO Manual. 2nd ed. Geneva, Switzerland: WHO Press, World Health Organization; 2011. p. 32–56. https://iris.who.int/bitstream/handle/10665/70765/WHO_IVB_11.09_eng.pdf?sequence=1
  • Shenoy B, Biradar S. Latex Agglutination Test (LAT)–for rapid diagnosis of acute bacterial meningitis. Pediatr Infect Dis. 2014;6(4):150–152. doi: 10.1016/j.pid.2014.10.004
  • Castillo D, Harcourt B, Hatcher C, et al. Identification and characterization of Neisseria meningitidis. In: Mayer L, editor. Laboratory methods for the diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae: WHO Manual. 2nd ed. Geneva, Switzerland: WHO Press, World Health Organization; 2011. p. 57–72. https://iris.who.int/bitstream/handle/10665/70765/WHO_IVB_11.09_eng.pdf?sequence=1
  • Rosenqvist E, Wedege E, Høiby EA, et al. Serogroup determination of Neisseria meningitidis by whole-cell ELISA, dot-blotting and agglutination. APMIS. 1990;98(1–6):501–506. doi: 10.1111/j.1699-0463.1990.tb01063.x
  • Tsai CM, Civin CI. Eight lipooligosaccharides of Neisseria meningitidis react with a monoclonal antibody which binds lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc). Infect Immun. 1991;59(10):3604–3609. doi: 10.1128/iai.59.10.3604-3609.1991
  • Mistretta N, Seguin D, Thiébaud J, et al. Genetic and structural characterization of L11 lipooligosaccharide from Neisseria meningitidis serogroup A strains. J Biol Chem. 2010;285(26):19874–19883. doi: 10.1074/jbc.M110.100636
  • Jolley KA, Brehony C, Maiden MC. Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev. 2007;31(1):89–96. doi: 10.1111/j.1574-6976.2006.00057.x
  • Caugant DA, Bovre K, Gaustad P, et al. Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J Gen Microbiol. 1986;132(3):641–652. doi: 10.1099/00221287-132-3-641
  • Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998;95(6):3140–3145. doi: 10.1073/pnas.95.6.3140
  • Besser J, Carleton HA, Gerner-Smidt P, et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect. 2018;24(4):335–341. doi: 10.1016/j.cmi.2017.10.013
  • Urwin R, Maiden MC. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 2003;11(10):479–487. doi: 10.1016/j.tim.2003.08.006
  • Jolley KA, Maiden MC. AgdbNet – antigen sequence database software for bacterial typing. BMC Bioinf. 2006;7(1):314. doi: 10.1186/1471-2105-7-314
  • Wang X, Cohn A, Comanducci M, et al. Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine. 2011;29(29–30):4739–4744. doi: 10.1016/j.vaccine.2011.04.092
  • Rodgers E, Bentley SD, Borrow R, et al. The global meningitis genome partnership. J Infect. 2020;81(4):510–520. doi: 10.1016/j.jinf.2020.06.064
  • Clark SA, Lucidarme J, Newbold LS, et al. Genotypic analysis of meningococcal factor H-binding protein from non-culture clinical specimens. PLoS One. 2014;9(2):e89921. doi: 10.1371/journal.pone.0089921
  • Itsko M, Retchless AC, Joseph SJ, et al. Full molecular typing of Neisseria meningitidis directly from clinical specimens for outbreak investigation. J Clin Microbiol. 2020;58(12):e01780–01720. doi: 10.1128/JCM.01780-20
  • Clark SA, Doyle R, Lucidarme J, et al. Targeted DNA enrichment and whole genome sequencing of Neisseria meningitidis directly from clinical specimens. Int J Med Microbiol. 2018;308(2):256–262. doi: 10.1016/j.ijmm.2017.11.004
  • Alderson MR, Arkwright PD, Bai X, et al. Surveillance and control of meningococcal disease in the COVID-19 era: a Global Meningococcal Initiative review. J Infect. 2022;84(3):289–296. doi: 10.1016/j.jinf.2021.11.016
  • Aye AMM, Bai X, Borrow R, et al. Meningococcal disease surveillance in the Asia–Pacific region (2020): the Global Meningococcal Initiative. J Infect. 2020;81(5):698–711. doi: 10.1016/j.jinf.2020.07.025
  • Potts CC, Retchless AC, McNamara LA, et al. Acquisition of ciprofloxacin resistance among an expanding clade of β-lactamase–positive, serogroup Y Neisseria meningitidis in the United States. Clinical Infectious Diseases. 2021;73(7):1185–1193. doi: 10.1093/cid/ciab358
  • Tan LK, Carlone GM, Borrow R. Advances in the development of vaccines against Neisseria meningitidis. N Engl J Med. 2010;362(16):1511–1520. doi: 10.1056/NEJMra0906357
  • Vipond C, Care R, Feavers IM. History of meningococcal vaccines and their serological correlates of protection. Vaccine. 2012;30:B10–17. doi: 10.1016/j.vaccine.2011.12.060
  • Findlow J, Borrow R, Stephens DS, et al. Correlates of protection for meningococcal surface protein vaccines: current approaches for the determination of breadth of coverage. Expert Rev Vaccines. 2022;21(6):753–769. doi: 10.1080/14760584.2022.2064850
  • Luo W, Arkwright PD, Borrow R. Antibody persistence following meningococcal ACWY conjugate vaccine licensed in the European Union by age group and vaccine. Expert Rev Vaccines. 2020;19(8):745–754. doi: 10.1080/14760584.2020.1800460
  • Miller E, Salisbury D, Ramsay M. Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine. 2001;20:S58–S67. doi: 10.1016/S0264-410X(01)00299-7
  • Pizza M, Bekkat-Berkani R, Rappuoli R. Vaccines against meningococcal diseases. Microorganisms. 2020;8(10):1521. doi: 10.3390/microorganisms8101521
  • Carr JP, MacLennan JM, Plested E, et al. Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme. Clin Microbiol Infect. 2022;28(12):1649.e1–1649.e8. doi: 10.1016/j.cmi.2022.07.004
  • Maiden MC, Ibarz-Pavon AB, Urwin R, et al. Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J Infect Dis. 2008;197(5):737–743. doi: 10.1086/527401
  • Mbaeyi S, Sampo E, Dinanibe K, et al. Meningococcal carriage 7 years after introduction of a serogroup a meningococcal conjugate vaccine in Burkina Faso: results from four cross-sectional carriage surveys. Lancet Infect Dis. 2020;20(12):1418–1425. doi: 10.1016/S1473-3099(20)30239-5
  • Holst J, Martin D, Arnold R, et al. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine. 2009;27:B3–12. doi: 10.1016/j.vaccine.2009.04.071
  • Holst J, Oster P, Arnold R, et al. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Hum Vaccin Immunother. 2013;9(6):1241–1253. doi: 10.4161/hv.24129
  • Marshall HS, McMillan M, Koehler AP, et al. Meningococcal B vaccine and meningococcal carriage in adolescents in Australia. N Engl J Med. 2020;382(4):318–327. doi: 10.1056/NEJMoa1900236
  • McNamara LA, Thomas JD, MacNeil J, et al. Meningococcal carriage following a vaccination campaign with MenB-4C and MenB-FHbp in response to a university serogroup B meningococcal disease outbreak—Oregon, 2015–2016. J Infect Dis. 2017;216(9):1130–1140. doi: 10.1093/infdis/jix446
  • Soeters HM, Whaley M, Alexander-Scott N, et al. Meningococcal carriage evaluation in response to a serogroup B meningococcal disease outbreak and mass vaccination campaign at a college—Rhode Island, 2015–2016. Clin Infect Dis. 2017;64(8):1115–1122. doi: 10.1093/cid/cix091
  • Martinon-Torres F, Nolan T, Toneatto D, et al. Persistence of the immune response after 4CMenB vaccination, and the response to an additional booster dose in infants, children, adolescents, and young adults. Hum Vaccin Immunother. 2019;15(12):2940–2951. doi: 10.1080/21645515.2019.1627159
  • Ostergaard L, Vesikari T, Senders SD, et al. Persistence of hSBA titers elicited by the meningococcal serogroup B vaccine MenB-FHbp for up to 4 years after a 2- or 3-dose primary series and immunogenicity, safety, and tolerability of a booster dose through 26 months. Vaccine. 2021;39(32):4545–4554. doi: 10.1016/j.vaccine.2021.06.005
  • Serum Institute of India Pvt. Ltd. Multivalent meningococcal meningitis vaccine from Serum Institute of India achieves WHO prequalification [Internet]. [cited 2023 Jul 24]. Available from: https://www.seruminstitute.com/press_release_sii_120723.php
  • Chen WH, Neuzil KM, Boyce CR, et al. Safety and immunogenicity of a pentavalent meningococcal conjugate vaccine containing serogroups A, C, Y, W, and X in healthy adults: a phase 1, single-centre, double-blind, randomised, controlled study. Lancet Infect Dis. 2018;18(10):1088–1096. doi: 10.1016/S1473-3099(18)30400-6
  • Tapia MD, Sow SO, Naficy A, et al. Meningococcal serogroup ACWYX conjugate vaccine in Malian toddlers. N Engl J Med. 2021;384(22):2115–2123. doi: 10.1056/NEJMoa2013615
  • Pfizer Inc. FDA approves Penbraya™, the first and only vaccine for the prevention of the five most common serogroups causing meningococcal disease in adolescents [Internet]. [cited 2023 Nov 8]. Available from: https://www.pfizer.com/news/press-release/press-release-detail/fda-approves-penbrayatm-first-and-only-vaccine-prevention
  • ClinicalTrials.gov. Effectiveness of GlaxoSmithKline Biologicals S.A’s meningococcal group B and combined ABCWY vaccines in healthy adolescents and young adults [Internet]. [cited 2022 Nov 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT04502693
  • ClinicalTrials.gov. Immunogenicity and safety study of GSK’s MenABCWY vaccine in healthy adolescents and adults previously primed with MenACWY vaccine [Internet]. [cited 2022 Nov 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT04707391
  • Findlow H, Campbell H, Lucidarme J, et al. Serogroup C Neisseria meningitidis disease epidemiology, seroprevalence, vaccine effectiveness and waning immunity, England, 1998/99 to 2015/16. Euro Surveill. 2019;24(1):1700818. doi: 10.2807/1560-7917.ES.2019.24.1.1700818
  • Ramsay ME, Andrews NJ, Trotter CL, et al. Herd immunity from meningococcal serogroup C conjugate vaccination in England: database analysis. BMJ. 2003;326(7385):365–366. doi: 10.1136/bmj.326.7385.365
  • Balmer P, Borrow R, Miller E. Impact of meningococcal C conjugate vaccine in the UK. J Med Microbiol. 2002;51(9):717–722. doi: 10.1099/0022-1317-51-9-717
  • UK Health Security Agency. Laboratory confirmed cases of invasive meningococcal infection in England: annual report for 2021 to 2022 supplementary data tables [Internet]. [cited 2024 Jan 18]. Available from: https://www.gov.uk/government/publications/meningococcal-disease-laboratory-confirmed-cases-in-england-in-2021-to-2022
  • Vesikari T, Peyrani P, Webber C, et al. Ten-year antibody persistence and booster response to MenACWY-TT vaccine after primary vaccination at 1-10 years of age. Hum Vaccin Immunother. 2020;16(6):1280–1291. doi: 10.1080/21645515.2020.1746110
  • Mbaeyi S, Pondo T, Blain A, et al. Incidence of meningococcal disease before and after implementation of quadrivalent meningococcal conjugate vaccine in the United States. JAMA Pediatr. 2020;174(9):843–851. doi: 10.1001/jamapediatrics.2020.1990
  • Campbell H, Andrews N, Parikh SR, et al. Impact of an adolescent meningococcal ACWY immunisation programme to control a national outbreak of group W meningococcal disease in England: a national surveillance and modelling study. Lancet Child Adolesc Health. 2022;6(2):96–105. doi: 10.1016/S2352-4642(21)00335-7
  • Ohm M, Hahne SJM, van der Ende A, et al. Vaccine impact and effectiveness of meningococcal serogroup ACWY conjugate vaccine implementation in the Netherlands: a nationwide surveillance study. Clin Infect Dis. 2022;74(12):2173–2180. doi: 10.1093/cid/ciab791
  • Finne J, Leinonen M, Makela PH. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet. 1983;2(8346):355–357. doi: 10.1016/S0140-6736(83)90340-9
  • Wyle FA, Artenstein MS, Brandt BL, et al. Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis. 1972;126(5):514–521. doi: 10.1093/infdis/126.5.514
  • Zlotnick GW, Jones TR, Liberator P, et al. The discovery and development of a novel vaccine to protect against Neisseria meningitidis serogroup B disease. Hum Vaccin Immunother. 2015;11(1):5–13. doi: 10.4161/hv.34293
  • Martinon-Torres F, Banzhoff A, Azzari C, et al. Recent advances in meningococcal B disease prevention: real-world evidence from 4CMenB vaccination. J Infect. 2021;83(1):17–26. doi: 10.1016/j.jinf.2021.04.031
  • Marshall GS, Fergie J, Presa J, et al. Rationale for the development of a pentavalent meningococcal vaccine: a US-focused review. Infect Dis Ther. 2022;11(3):937–951. doi: 10.1007/s40121-022-00609-9
  • Ramsay M Use of MLST in the epidemiology of meningococci [Internet]. [cited 2023 Jun 7]. Available from: https://webarchive.nationalarchives.gov.uk/ukgwa/20140714074352/http://www.hpa.org.uk/webc/hpawebfile/hpaweb_c/1194947392421
  • Christensen H, Trotter CL, Hickman M, et al. Re-evaluating cost effectiveness of universal meningitis vaccination (Bexsero) in England: modelling study. BMJ. 2014;349:g5725. doi: 10.1136/bmj.g5725
  • Leimkugel J, Racloz V, Jacintho da Silva L, et al. Global review of meningococcal disease. A shifting etiology. J Bacteriol Res. 2009;1:6–18.
  • Chang Q, Tzeng YL, Stephens DS. Meningococcal disease: changes in epidemiology and prevention. Clin Epidemiol. 2012;4:237–245. doi: 10.2147/CLEP.S28410
  • van Kessel F, van den Ende C, Oordt-Speets AM, et al. Outbreaks of meningococcal meningitis in non-African countries over the last 50 years: a systematic review. J Glob Health. 2019;9(1):010411. doi: 10.7189/jogh.09.010411
  • Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus: I. The role of humoral antibodies. J Exp Med. 1969;129(6):1307–1326. doi: 10.1084/jem.129.6.1307
  • Abio A, Neal KR, Beck CR. An epidemiological review of changes in meningococcal biology during the last 100 years. Pathog Glob Health. 2013;107(7):373–380. doi: 10.1179/2047773213Y.0000000119
  • Safadi MA, Bettinger JA, Maturana GM, et al. Evolving meningococcal immunization strategies. Expert Rev Vaccines. 2015;14(4):505–517. doi: 10.1586/14760584.2015.979799
  • MacNeil JR, Blain AE, Wang X, et al. Current epidemiology and trends in meningococcal disease—United States, 1996–2015. Clin Infect Dis. 2018;66(8):1276–1281. doi: 10.1093/cid/cix993
  • Trotter CL, Lingani C, Fernandez K, et al. Impact of MenAfriVac in nine countries of the African meningitis belt, 2010–15: an analysis of surveillance data. Lancet Infect Dis. 2017;17(8):867–872. doi: 10.1016/S1473-3099(17)30301-8
  • LaForce FM, Djingarey M, Viviani S, et al. Successful African introduction of a new group A meningococcal conjugate vaccine: future challenges and next steps. Hum Vaccin Immunother. 2018;14(5):1098–1102. doi: 10.1080/21645515.2017.1378841
  • Serra L, Knuf M, Martinon-Torres F, et al. Review of clinical studies comparing meningococcal serogroup C immune responses induced by MenACWY-TT and monovalent serogroup C vaccines. Hum Vaccin Immunother. 2021;17(7):2205–2215. doi: 10.1080/21645515.2020.1855952
  • Soumahoro L, Abitbol V, Vicic N, et al. Meningococcal disease outbreaks: a moving target and a case for routine preventative vaccination. Infect Dis Ther. 2021;10(4):1949–1988. doi: 10.1007/s40121-021-00499-3
  • Alderfer J, Isturiz RE, Srivastava A. Lessons from mass vaccination response to meningococcal B outbreaks at US universities. Postgrad Med. 2020;132(7):614–623. doi: 10.1080/00325481.2020.1766265
  • Caron F, du Chatelet IP, Leroy JP, et al. From tailor-made to ready-to-wear meningococcal B vaccines: longitudinal study of a clonal meningococcal B outbreak. Lancet Infect Dis. 2011;11(6):455–463. doi: 10.1016/S1473-3099(11)70027-5
  • European Centre for Disease Prevention and Control. Vaccine Scheduler. Meningococcal Disease: Recommended Vaccinations [Internet]. [cited 2024 Jan 24]. Available from: https://vaccine-schedule.ecdc.europa.eu/Scheduler/ByDisease?SelectedDiseaseId=48&SelectedCountryIdByDisease=-1
  • Wang B, Giles L, Andraweera P, et al. Effectiveness and impact of the 4CMenB vaccine against invasive serogroup B meningococcal disease and gonorrhoea in an infant, child, and adolescent programme: an observational cohort and case-control study. Lancet Infect Dis. 2022;22(7):1011–1020. doi: 10.1016/S1473-3099(21)00754-4
  • Castilla J, Garcia Cenoz M, Abad R, et al. Effectiveness of a meningococcal group B vaccine (4CMenB) in children. N Engl J Med. 2023;388(5):427–438. doi: 10.1056/NEJMoa2206433
  • Tin Tin Htar M, Jackson S, Balmer P, et al. Systematic literature review of the impact and effectiveness of monovalent meningococcal C conjugated vaccines when used in routine immunization programs. BMC Public Health. 2020;20:1890. doi: 10.1186/s12889-020-09946-1
  • Cohn AC, MacNeil JR, Harrison LH, et al. Effectiveness and duration of protection of one dose of a meningococcal conjugate vaccine. Pediatrics. 2017;139(2):e20162193. doi: 10.1542/peds.2016-2193
  • Koliou M, Kasapi D, Mazeri S, et al. Epidemiology of invasive meningococcal disease in Cyprus 2004 to 2018. Euro Surveill. 2020;25(30):1900534. doi: 10.2807/1560-7917.ES.2020.25.30.1900534
  • Fernandez K, Lingani C, Aderinola OM, et al. Meningococcal meningitis outbreaks in the African meningitis belt after meningococcal serogroup A conjugate vaccine introduction, 2011–2017. J Infect Dis. 2019;220(suppl 4):S225–S232. doi: 10.1093/infdis/jiz355
  • US Centers for Disease Control and Prevention. Meningococcal disease outbreak among gay, bisexual men in Florida, 2021–23 [Internet]. [cited 2024 Jan 30]. Available from: https://www.cdc.gov/meningococcal/outbreaks/FL2022.html
  • Ladhani SN, Lucidarme J, Parikh SR, et al. Meningococcal disease and sexual transmission: urogenital and anorectal infections and invasive disease due to Neisseria meningitidis. Lancet. 2020;395(10240):1865–1877. doi: 10.1016/S0140-6736(20)30913-2
  • Badur S, Al Dabbagh MA, Shibl AM, et al. The epidemiology of invasive meningococcal disease in the Kingdom of Saudi Arabia: a narrative review with updated analysis. Infect Dis Ther. 2021;10(4):2035–2049. doi: 10.1007/s40121-021-00467-x
  • Mustapha MM, Marsh JW, Harrison LH. Global epidemiology of capsular group W meningococcal disease (1970–2015): multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex. Vaccine. 2016;34(13):1515–1523. doi: 10.1016/j.vaccine.2016.02.014
  • Lucidarme J, Hill DM, Bratcher HB, et al. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. J Infect. 2015;71(5):544–552. doi: 10.1016/j.jinf.2015.07.007
  • Lucidarme J, Scott KJ, Ure R, et al. An international invasive meningococcal disease outbreak due to a novel and rapidly expanding serogroup W strain, Scotland and Sweden, July to August 2015. Euro Surveill. 2016;21(45):30395. doi: 10.2807/1560-7917.ES.2016.21.45.30395
  • Ladhani SN, Beebeejaun K, Lucidarme J, et al. Increase in endemic Neisseria meningitidis capsular group W sequence type 11 complex associated with severe invasive disease in England and Wales. Clin Infect Dis. 2015;60(4):578–585. doi: 10.1093/cid/ciu881
  • Booy R, Gentile A, Nissen M, et al. Recent changes in the epidemiology of Neisseria meningitidis serogroup W across the world, current vaccination policy choices and possible future strategies. Hum Vaccin Immunother. 2019;15(2):470–480. doi: 10.1080/21645515.2018.1532248
  • Villena R, Valenzuela MT, Bastias M, et al. Invasive meningococcal disease in Chile seven years after ACWY conjugate vaccine introduction. Vaccine. 2022;40(4):666–672. doi: 10.1016/j.vaccine.2021.11.075
  • Centers for Disease Control and Prevention. Enhanced Meningococcal Disease Surveillance Report. 2019 [Internet]. [cited 2022 Dec 27]. Available from: https://www.cdc.gov/meningococcal/downloads/NCIRD-EMS-Report-2019.pdf
  • Zumla A, Memish ZA. Risk of antibiotic resistant meningococcal infections in Hajj pilgrims. BMJ. 2019;366:l5260. doi: 10.1136/bmj.l5260
  • Micoli F, Bagnoli F, Rappuoli R, et al. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19(5):287–302. doi: 10.1038/s41579-020-00506-3
  • Brooks A, Lucidarme J, Campbell H, et al. Detection of the United States Neisseria meningitidis urethritis clade in the United Kingdom, August and December 2019 – emergence of multiple antibiotic resistance calls for vigilance. Euro Surveill. 2020;25(15):2000375. doi: 10.2807/1560-7917.ES.2020.25.15.2000375
  • Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360–e370. doi: 10.1016/S2589-7500(21)00077-7
  • Middeldorp M, van Lier A, van der Maas N, et al. Short term impact of the COVID-19 pandemic on incidence of vaccine preventable diseases and participation in routine infant vaccinations in the Netherlands in the period March-September 2020. Vaccine. 2021;39(7):1039–1043. doi: 10.1016/j.vaccine.2020.12.080
  • Taha S, Hong E, Denizon M, et al. The rapid rebound of invasive meningococcal disease in France at the end of 2022. J Infect Public Health. 2023;16(12):1954–1960. doi: 10.1016/j.jiph.2023.10.001
  • Clark SA, Campbell H, Ribeiro S, et al. Epidemiological and strain characteristics of invasive meningococcal disease prior to, during and after COVID-19 pandemic restrictions in England. J Infect. 2023;87(5):385–391. doi: 10.1016/j.jinf.2023.09.002
  • Virginia Department of Health. Virginia Department of Health Declares Statewide Outbreak of Meningococcal Disease [Internet]. [cited 2024 Jan 18]. Available from: https://www.vdh.virginia.gov/clinicians/virginia-department-of-health-declares-statewide-outbreak-of-meningococcal-disease/
  • GlaxoSmithKline. Half of parents surveyed either cancelled or delayed their child’s scheduled meningitis vaccination during the COVID-19 pandemic – GSK survey shows [Internet]. [cited 2022 May 17]. Available from: https://www.gsk.com/en-gb/media/press-releases/half-of-parents-surveyed-either-cancelled-or-delayed-their-child-s-scheduled-meningitis-vaccination-during-the-covid-19-pandemic-gsk-survey-shows-1/
  • Yazdankhah SP, Kriz P, Tzanakaki G, et al. Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol. 2004;42(11):5146–5153. doi: 10.1128/JCM.42.11.5146-5153.2004
  • Peterson ME, Li Y, Shanks H, et al. Serogroup-specific meningococcal carriage by age group: a systematic review and meta-analysis. BMJ Open. 2019;9(4):e024343. doi: 10.1136/bmjopen-2018-024343
  • Cooper LV, Kristiansen PA, Christensen H, et al. Meningococcal carriage by age in the African meningitis belt: a systematic review and meta-analysis. Epidemiol Infect. 2019;147:e228. doi: 10.1017/S0950268819001134
  • Australian Government Department of Health and Aged Care. National Immunisation Program Schedule [Internet]. [cited 2024 Jan 25]. Available from: https://www.health.gov.au/sites/default/files/2023-11/national-immunisation-program-schedule.pdf
  • Ministério da Saúde do Brasil. Calendário de Vacinação [Internet]. [cited 2023 Nov 6]. Available from: https://www.gov.br/saude/pt-br/vacinacao/calendario
  • Government of Canada. Meningococcal Vaccines: Canadian Immunization Guide [Internet]. [cited 2023 Nov 6]. Available from: https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-13-meningococcal-vaccine.html
  • Ministerio de Salud (Gobierno de Chile). Calendario de Vacunación 2023 [Internet]. [cited 2023 Nov 6]. Available from: https://saludresponde.minsal.cl/wp-content/uploads/2023/03/CALENDARIO-VACUNACION-2023.png
  • Ministerio de Salud (Republica Argentina). Calendario Nacional de Vacunación 2022 [Internet]. [cited 2023 Nov 6]. Available from: https://bancos.salud.gob.ar/recurso/calendario-nacional-de-vacunacion-2022
  • UK National Health Service. Vaccination: Meningitis [Internet]. [cited 2024 Jan 24]. Available from: https://www.nhs.uk/conditions/meningitis/vaccination/
  • US Centers for Disease Control and Prevention. Recommended child and adolescent immunization schedule for ages 18 years or younger [Internet]. [cited 2023 Jul 26]. Available from: https://www.cdc.gov/vaccines/schedules/downloads/child/0-18yrs-child-combined-schedule.pdf
  • New Zealand Ministry of Health. Immunisation handbook 2020: 13. Meningococcal disease [Internet]. [cited 2023 Nov 6]. Available from: https://www.health.govt.nz/our-work/immunisation-handbook-2020/13-meningococcal-disease#12-5
  • US Centers for Disease Control and Prevention. Recommended adult immunization schedule for ages 19 years or older [Internet]. [cited 2023 Feb 13]. Available from: https://www.cdc.gov/vaccines/schedules/downloads/adult/adult-combined-schedule.pdf
  • State of Israel Ministry of Health. Vaccines for babies and children [Internet]. [cited 2023 Feb 13]. Available from: https://www.health.gov.il/English/Topics/Pregnancy/Vaccination_of_infants/Pages/default.aspx
  • Blanchard-Rohner G. Vaccination in children with autoimmune disorders and treated with various immunosuppressive regimens: a comprehensive review and practical guide. Front Immunol. 2021;12:711637. doi: 10.3389/fimmu.2021.711637
  • Czumbel I, Quinten C, Lopalco P, et al. Management and control of communicable diseases in schools and other child care settings: systematic review on the incubation period and period of infectiousness. BMC Infect Dis. 2018;18(1):199. doi: 10.1186/s12879-018-3095-8
  • Tsang RSW. A narrative review of the molecular epidemiology and laboratory surveillance of vaccine preventable bacterial meningitis agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms. 2021;9:449. doi: 10.3390/microorganisms9020449