626
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Accuracy between optical and inertial motion capture systems for assessing trunk speed during preferred gait and transition periods

, , , &
Pages 366-377 | Received 25 Apr 2017, Accepted 17 Nov 2017, Published online: 12 Jan 2018

References

  • Aminian, K., Robert, P., Jequier, E., & Schutz, Y. (1995). Estimation of speed and incline of walking using neural network. IEEE Transactions on Instrumentation and Measurement, 44, 743–746. doi:10.1109/19.38732210.1109/19.387322
  • Bancroft, J. B., & Lachapelle, G. (2011). Data fusion algorithms for multiple inertial measurement units. Sensors, 11, 6771–6798. doi:10.3390/s11070677110.3390/s110706771
  • Beyea, J., McGibbon, C. A., Sexton, A., Noble, J., & O’Connell, C. (2017). Convergent validity of a wearable sensor system for measuring sub-task performance during the timed up-and-go test. Sensors, 17, 934. doi:10.3390/s1704093410.3390/s17040934
  • Brodie, M. A., Walmsley, A., & Page, W. (2008). Dynamic accuracy of inertial measurement units during simple pendulum motion. Computer Methods in Biomechanics and Biomedical Engineering, 11, 235–242. doi:10.1080/1025584080212552610.1080/10255840802125526
  • Cutti, A. G., Giovanardi, A., Rocchi, L., & Davalli, A. (2006). A simple test to assess the static and dynamic accuracy of an inertial sensors system for human movement analysis. EMBS 2006. Proceedings of the 28th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (pp. 5912–5915). New York, NY: IEEE Computer Society.10.1109/IEMBS.2006.260705
  • Damgrave, R. G. J., & Lutters, D. (2009). The drift of the xsens moven motion capturing suit during common movements in a working environment. In 19th CIRP Design Conference—Competitive Design, Cranfield University (p. 338). Cranfield University.
  • de Vries, W. H. K., Veeger, H. E. J., Baten, C. T. M., & van der Helm, F. C. T. (2009). Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait & Posture, 29, 535–541. doi:10.1016/j.gaitpost.2008.12.00410.1016/j.gaitpost.2008.12.004
  • Floor-Westerdijk, M. J., Schepers, H. M., Veltink, P. H., van Asseldonk, E. H., & Buurke, J. H. (2012). Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking. IEEE Transactions on Biomedical Engineering, 59, 2080–2084. doi:10.1109/TBME.2012.219721110.1109/TBME.2012.2197211
  • Gard, S. A., Miff, S. C., & Kuo, A. D. (2004). Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Human Movement Science, 22, 597–610. doi:10.1016/j.humov.2003.11.00210.1016/j.humov.2003.11.002
  • Godwin, A., Agnew, M., & Stevenson, J. (2009). Accuracy of inertial motion sensors in static, quasistatic, and complex dynamic motion. Journal of Biomechanical Engineering, 131(11), 114501. doi:10.1115/1.400010910.1115/1.4000109
  • Karatsidis, A., Bellusci, G., Schepers, H. M., de Zee, M., Andersen, M. S., & Veltink, P. H. (2016). Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors, 17, 75. doi:10.3390/s1701007510.3390/s17010075
  • Laudanski, A., Yang, S., & Li, Q. (2011). A concurrent comparison of inertia sensor-based walking speed estimation methods. EMBS 2011. Proceedings of the Annual International Conference of the 33rd IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society (pp. 3484–3487). Boston, MA: IEEE Computer Society.10.1109/IEMBS.2011.6090941
  • Lebel, K., Boissy, P., Hamel, M., & Duval, C. (2013). Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions—Effect of velocity. PLoS ONE, 8, e79945. doi:10.1371/journal.pone.007994510.1371/journal.pone.0079945
  • Morrow, M. M. B., Lowndes, B., Fortune, E., Kaufman, K. R., & Hallbeck, S. (2016). Validation of inertial measurement units for upper body kinematics. Journal of Applied Biomechanics, 33, 227–232. doi: 10.1123/jab.2016-0120
  • O’Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of lunge biomechanics with multiple and individual inertial measurement units. Sports Biomechanics, 16, 342–360. doi:10.1080/14763141.2017.131454410.1080/14763141.2017.1314544
  • Ren, L., Jones, R. K., & Howard, D. (2008). Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. Journal of Biomechanics, 41, 2750–2759. doi:10.1016/j.jbiomech.2008.06.00110.1016/j.jbiomech.2008.06.001
  • Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017a). Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Gait & Posture, 54, 80–86. doi:10.1016/j.gaitpost.2017.02.02910.1016/j.gaitpost.2017.02.029
  • Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017b). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical & Biological Engineering & Computing, 55, 609–619. doi:10.1007/s11517-016-1537-210.1007/s11517-016-1537-2
  • Robertson, D., Caldwell, G., Hamill, J., Kamen, G., & Whittlesey, S. (2014). Research methods in biomechanics (2nd ed.): Three-dimensional kinematics (pp. 35–59). Champaign, IL: Human Kinetics.
  • Roetenberg, D., Luinge, H. J., Baten, C. T. M., & Veltink, P. H. (2005). Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 395–405. doi:10.1109/TNSRE.2005.84735310.1109/TNSRE.2005.847353
  • Song, Y., Shin, S., Kim, S., Lee, D., & Lee, K. H. (2007). Speed estimation from a tri-axial accelerometer using neural networks. EMBS (2007). Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3224–3227). Lyon: IEEE Computer Society.
  • Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6, 35–39. doi:10.1177/87564793900060010610.1177/875647939000600106
  • Thies, S. B., Tresadern, P., Kenney, L., Howard, D., Goulermas, J. Y., Smith, C., & Rigby, J. (2007). Comparison of linear accelerations from three measurement systems during “reach & grasp”. Medical Engineering & Physics, 29, 967–972. doi:10.1016/j.medengphy.2006.10.01210.1016/j.medengphy.2006.10.012
  • Zhang, J.-T., Novak, A. C., Brouwer, B., & Li, Q. (2013). Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiological Measurement, 34, N63–N69. doi:10.1088/0967-3334/34/8/N6310.1088/0967-3334/34/8/N63
  • Zhou, H., & Hu, H. (2007). Upper limb motion estimation from inertial measurements. International Journal of Information Technology, 13, 1–14.
  • Zijlstra, W., & Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture, 18, 1–10. doi:10.1016/S0966-6362(02)00190-X10.1016/S0966-6362(02)00190-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.