675
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study between fully tethered and free swimming at different paces of swimming in front crawl

, , , &
Pages 571-586 | Received 23 Sep 2017, Accepted 12 Feb 2018, Published online: 21 Mar 2018

References

  • Bollens, E., Annemans, L., Vaes, W., & Clarys, J. P. (1988). Peripheral EMG comparison between fully tethered and free front crawl swimming. In B. E. Ungerechts, K. Wilke, & K. Reischle (Eds.), Swimming science V (pp. 173–181). Champaign, IL: Human Kinetics.
  • Craig, A. B., & Boomer, W. F. (1980). Relationships between tethered and free swimming the front crawl stroke. Journal of Biomechanics, 13, 194–195. doi:10.1016/0021-9290(80)90208-0 10.1016/0021-9290(80)90208-0
  • Dopsaj, M., Matkovic, I., Thanopoulos, V., & Okicic, T. (2003). Reliability and validity of basic kinematics and mechanical characteristics of pulling force in swimmers measured by the method of tethered swimming with maximum intensity of 60 s. Physical Education and Sport, 1, 11–22.
  • Formosa, D., Mason, B., & Burkett, B. (2011). The force-time profile of elite front crawl swimmers. Journal of Sports Sciences, 29, 811–819. doi:10.1080/02640414.2011.561867 10.1080/02640414.2011.561867
  • Gourgoulis, V., Antoniou, P., Aggeloussis, N., Mavridis, G., Kasimatis, P., Vezos, N., … Mavromatis, G. (2010). Kinematic characteristics of the stroke and orientation of the hand during front crawl resisted swimming. Journal of Sports Sciences, 28, 1165–1173. doi:10.1080/02640414.2010.507251 10.1080/02640414.2010.507251
  • Hay, J. G., & Thayer, A. M. (1989). Flow visualization of competitive swimming techniques: The tufts method. Journal of Biomechanics, 22, 11–19. doi:10.1016/0021-9290(89)90180-2 10.1016/0021-9290(89)90180-2
  • Hollander, A., de Groot, G., van Ingen Schenau, G., Toussaint, H., de Best, H., Peeters, W., … Schreurs, A. (1986). Measurement of active drag during crawl arm stroke swimming. Journal of Sports Sciences, 4, 21–30. doi:10.1080/02640418608732094 10.1080/02640418608732094
  • Karpovich, P. V. (1930). Swimming speed analyzed. Scientific American, 142, 224–225. doi:10.1038/scientificamerican0330-224 10.1038/scientificamerican0330-224
  • Keskinen, K. (1997). Evaluation of technique performances in freestyle swimming. Kinesiology, 2, 30–38.
  • Kjendlie, P. L., & Thorsvald, K. (2006). A tethered swimming test is highly reliable. Portuguese Journal of Sport Sciences, 6, 231–233.
  • Kolmogorov, S. V., & Duplishcheva, O. A. (1992). Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. Journal of Biomechanics, 25, 311–318. doi:10.1016/0021-9290(92)90028-Y 10.1016/0021-9290(92)90028-Y
  • Lauder, M., Dabnichki, P., & Bartlett, R. (2001). Improved accuracy and reliability of sweepback angle, pitch angle and hand velocity calculations in swimming. Journal of Biomechanics, 34, 31–39. doi:10.1016/S0021-9290(00)00166-4 10.1016/S0021-9290(00)00166-4
  • Maglischo, E. W. (2003). Swimming fastest (pp. 27–28, 97–98). Champaign, IL: Human Kinetics.
  • Maglischo, C. W., Maglischo, E. W., Sharp, R. L., Zier, D. J., & Katz, A. (1984). Tethered and nontethered crawl swimming. In J. Terauds, K. Barthels, E. Kreighbaum, R. Mann, & J. Crakes (Eds.), International symposium on the biomechanics of sport (Vol. 2, pp. 163–176). San Diego: Academic Publishers.
  • Martin, R. B., Yeater, R. A., & White, M. K. (1981). A simple analytical model for the crawl stroke. Journal of Biomechanics, 14, 539–548. doi:10.1016/0021-9290(81)90003-8 10.1016/0021-9290(81)90003-8
  • Matsuuchi, K., Miwa, T., Nomura, T., Sakakibara, J., Shintani, H., & Ungerechts, B. (2009). Unsteady flow field around a human hand and propulsive force in swimming. Journal of Biomechanics, 42, 42–47. doi:10.1016/j.jbiomech.2008.10.009 10.1016/j.jbiomech.2008.10.009
  • Monnet, T., Samson, M., Bernard, A., David, L., & Lacouture, P. (2014). Measurement of three dimensional hand kinematics during swimming with a motion capture system: A feasibility study. Sports Engineering, 17, 171–181. doi:10.1007/s12283-014-0152-4 10.1007/s12283-014-0152-4
  • Morouço, P., Keskinen, K., Vilas-Boas, J. P., & Fernandes, R. (2011). Relationship between tethered forces and the four swimming techniques performance. Journal of Applied Biomechanics, 27, 161–169. doi:10.1123/jab.27.2.161 10.1123/jab.27.2.161
  • Payton, C., & Bartlett, R. (1995). Estimating propulsive forces in swimming from three-dimensional kinematic data. Journal of Sports Sciences, 13, 447–454. doi:10.1080/02640419508732261 10.1080/02640419508732261
  • Pessoa Filho, D. M., & Denadai, B. S. (2008). Mathematical basis for modelling swimmer power output in the front crawl tethered swimming: An application to aerobic evaluation. The Open Sports Sciences Journal, 1, 31–37. doi:10.2174/1875399X00801010031 10.2174/1875399X00801010031
  • Samson, M., Monnet, T., Bernard, A., Lacouture, P., & David, L. (2015). Kinematic hand parameters in front crawl at different paces of swimming. Journal of Biomechanics, 48, 3743–3750. doi:10.1016/j.jbiomech.2015.07.034 10.1016/j.jbiomech.2015.07.034
  • Sanders, R. H. (1999). Hydrodynamic characteristics of a Swimmer’s hand. Journal of Applied Biomechanics, 15, 3–26. doi:10.1123/jab.15.1.3 10.1123/jab.15.1.3
  • Soncin, R., Mezêncio, B., Ferreira, J. C., Rodrigues, S. A., Huebner, R., Serrão, J. C., & Szmuchrowski, L. (2017). Determination of a quantitative parameter to evaluate swimming technique based on the maximal tethered swimming test. Sports Biomechanics, 16, 248–257. doi:10.1080/14763141.2016.1231836 10.1080/14763141.2016.1231836
  • Takagi, H., Nakashima, M., Ozaki, T., & Matsuuchi, K. (2014). Unsteady hydrodynamic forces acting on a robotic arm and its flow field: Application to the crawl stroke. Journal of Biomechanics, 47, 1401–1408. doi:10.1016/j.jbiomech.2014.01.046 10.1016/j.jbiomech.2014.01.046
  • Yeater, R. A., Martin, R. B., White, M. K., & Gilson, K. H. (1981). Tethered swimming forces in the crawl, breast and back strokes and their relationship to competitive performance. Journal of Biomechanics, 14, 527–537. doi:10.1016/0021-9290(81)90002-6 10.1016/0021-9290(81)90002-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.