639
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of force-velocity profiles of the leg-extensors for elite athletes in the throwing events relating to gender, age and event

, , &
Pages 720-736 | Received 09 Oct 2018, Accepted 14 Mar 2019, Published online: 27 May 2019

References

  • Andersen, J. L., Schjerling, P., & Saltin, B. (2000). Muscle, genes and athletic performance. Scientific American, 283, 48–55.
  • Badura, M., Schleichardt, A., & Ueberschär, O. (2017). Untersuchung der isokinetischen Maximalkräfte und mechanischen Leistungsmaxima der unteren Extremitäten in den leichtathletischen Wurf- und Stoßdisziplinen [Investigation of maximum isokinetic forces and mechanical power of the legs in the athletic throwing events]. Leistungssport, 47, 41–47.
  • Blazquez, I. N., Warren, B. L., O’Hanlon, A. M., & Silvestri, L. R. (2013). An adequate interset rest period for strength recovery during a common isokinetic test. The Journal of Strength & Conditioning Research, 27, 1981–1987. doi:10.1519/JSC.0b013e3182764d70
  • Bobbert, M. F. (2012). Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic?. Journal of Applied Physiology, 112, 1975–1983. doi:10.1152/japplphysiol.00787.2011
  • Bobbert, M. F., & Van Soest, A. J. (1994). Effects of muscle strengthening on vertical jump height: A simulation study. Medicine and Science in Sports and Exercise, 26, 1012–1020. doi:10.1249/00005768-199408000-00013
  • Bottinelli, R., Canepari, M., Pellegrino, M. A., & Reggiani, C. (1996). Force‐velocity properties of human skeletal muscle fibres: Myosin heavy chain isoform and temperature dependence. The Journal of Physiology, 495, 573–586. doi:10.1113/jphysiol.1996.sp021617
  • Caiozzo, V. J., Perrine, J. J., & Edgerton, V. R. (1981). Training-induced alterations of the in vivo force-velocity relationship of human muscle. Journal of Applied Physiology, 51, 750–754. doi:10.1152/jappl.1981.51.3.750
  • Cavanagh, P. R., & Komi, P. V. (1979). Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. European Journal of Applied Physiology and Occupational Physiology, 42, 159–163. doi:10.1007/BF00431022
  • Chemnitz, I. (2014). Alaska – modelling and simulating mechatronic systems (Version 8) [Simulation Software]. Chemnitz: Institute for Mechatronics.
  • Cormie, P., McGuigan, M. R., & Newton, R. U. (2010). Influence of strength on magnitude and mechanisms of adaptation to power training. Medicine & Science in Sports & Exercise, 42, 1566–1581. doi:10.1249/MSS.0b013e3181cf818d
  • Cormie, P., McGuigan, M. R., & Newton, R. U. (2011). Developing maximal neuromuscular power: Part 2 – Training considerations for improving maximal power production. Sports Medicine, 41, 125–146. doi:10.2165/11538500-000000000-00000
  • Coyle, E. F., Costill, D. L., & Lesmes, G. R. (1979). Leg extension power and muscle fiber composition. Medicine and Science in Sports, 11, 12–15.
  • Cronin, J., McNair, P. J., & Marshall, R. N. (2001). Velocity specificity, combination training and sport specific tasks. Journal of Science and Medicine in Sport, 4, 168–178. doi:10.1016/S1440-2440(01)80027-X
  • Fleck, S. J., & Kraemer, W. (2014). Designing resistance training programs (pp. 319–348). Champaign, IL: Human Kinetics.
  • Haff, G. G., & Nimphius, S. (2012). Training principles for power. Strength & Conditioning Journal, 34, 2–12. doi:10.1519/SSC.0b013e31826db467
  • Hahn, D., Schwirtz, A., & Huber, A. (2005). Anthropometric standardisation of multiarticular leg extension movements: A theoretical study. Isokinetics and Exercise Science, 13, 95–101. doi:10.3233/IES-2005-0185
  • Harrison, A. J., Keane, S. P., & Coglan, J. (2004). Force-velocity relationship and stretch-shortening cycle function in sprint and endurance athletes. Journal of Strength and Conditioning Research, 18, 473–479. doi:10.1519/13163.1
  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126, 136–195. doi:10.1098/rspb.1938.0050
  • Hoffman, T., Stauffer, R. W., & Jackson, A. S. (1979). Sex difference in strength. The American Journal of Sports Medicine, 7, 265–267. doi:10.1177/036354657900700415
  • Ivy, J. L., Withers, R. T., Brose, G., Maxwell, B. D., & Costill, D. L. (1981). Isokinetic contractile properties of the quadriceps with relation to fiber type. European Journal of Applied Physiology and Occupational Physiology, 47, 247–255. doi:10.1007/BF00422470
  • Jaric, S. (2016). Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Medicine, 46, 1585–1589. doi:10.1007/s40279-016-0531-z
  • Jöllenbeck, T. (1998). Is electromechanical delay misinterpreted? In H. J. Riehle & M. Vieten (Eds.), Proceedings of the XVI. International Symposium of Biomechanics in Sports (pp. 38–41). Konstanz, Germany: University of Konstanz.
  • Kawamori, N., & Haff, G. G. (2004). The optimal training load for the development of muscular power. Journal of Strength and Conditioning Research, 18, 675–684. doi:10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2
  • Landolsi, M., Bouhlel, E., Zarrouk, F., Lacouture, P., & Tabka, Z. (2014). The relationships between leg peak power and shot-put performance in national-level athletes. Isokinetics and Exercise Science, 22, 55–61. doi:10.3233/IES-130518
  • Lemaire, A., Ripamonti, M., Ritz, M., & Rahmani, A. (2014). Agreement of three vs. eight isokinetic preset velocities to determine knee extensor torque-and power-velocity relationships. Isokinetics and Exercise Science, 22, 1–7. doi:10.3233/IES-130524
  • Luhtanen, P., & Komi, P. V. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied Physiology and Occupational Physiology, 38, 181–188. doi:10.1007/BF00430076
  • Roemer, K. (2006). Lösung inverser Problemstellungen in der Biomechanik – Am Beispiel von Beinstreckbewegungen [The solution of inverse problems in biomechanics – Illustrated by the example of leg press tasks]. Schorndorf, Germany: Hofmann.
  • Samozino, P., Rejc, E., Di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force–velocity profile in ballistic movements—Altius. Medicine & Science in Sports & Exercise, 44, 313–322. doi:10.1249/MSS.0b013e31822d757a
  • Schantz, P., Randall‐Fox, E., Hutchison, W., Tydén, A., & Åstrand, P. O. (1983). Muscle fibre type distribution, muscle cross‐sectional area and maximal voluntary strength in humans. Acta Physiologica Scandinavica, 117, 219–226. doi:10.1111/j.1748-1716.1983.tb07200.x
  • Schleichardt, A. (2014). Entwicklung eines Modells zur Simulation konzentrischer Beinstreckbewegungen unter Berücksichtigung interagierender Muskeln. [Development of a model for the simulation of concentric leg extension movements with attention to interacting muscles] ( Doctoral dissertation). University of Leipzig, Germany. Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-147192
  • Siebert, T., Sust, M., Thaller, S., Tilp, M., & Wagner, H. (2007). An improved method to determine neuromuscular properties using force laws–From single muscle to applications in human movements. Human Movement Science, 26, 320–341. doi:10.1016/j.humov.2007.01.006
  • Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., Hostler, D. P., Crill, M. T., … Toma, K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. Journal of Histochemistry & Cytochemistry, 48, 623–629. doi:10.1177/002215540004800506
  • Sust, M., Schmalz, T., & Linnenbecker, S. (1997). Relationship between distribution of muscle fibres and invariables of motion. Human Movement Science, 16, 533–546. doi:10.1016/S0167-9457(96)00063-2
  • Terzis, G., Spengos, K., Kavouras, S., Manta, P., & Georgiadis, G. (2010). Muscle fibre type composition and body composition in hammer throwers. Journal of Sports Science & Medicine, 9, 104–109.
  • Visser, J. J., Hoogkamer, J. E., Bobbert, M. F., & Huijing, P. A. (1990). Length and moment arm of human leg muscles as a function of knee and hip-joint angles. European Journal of Applied Physiology and Occupational Physiology, 61, 453–460. doi:10.1007/BF00236067
  • Wilson, G. J., Newton, R. U., Murphy, A. J., & Humphries, B. J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine & Science in Sports & Exercise, 25, 1279–1286. doi:10.1249/00005768-199311000-00013
  • Zaras, N., Spengos, K., Methenitis, S., Papadopoulos, C., Karampatsos, G., Georgiadis, G., … Terzis, G. (2013). Effects of strength vs. ballistic-power training on throwing performance. Journal of Sports Science & Medicine, 12, 130.
  • Zaras, N. D., Stasinaki, A. E., Krase, A. A., Methenitis, S. K., Karampatsos, G. P., Georgiadis, G. V., … Terzis, G. D. (2014). Effects of tapering with light vs. heavy loads on track and field throwing performance. The Journal of Strength & Conditioning Research, 28, 3484–3495. doi:10.1519/JSC.0000000000000566
  • Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. The Journal of Strength & Conditioning Research, 23, 2598–2604. doi:10.1519/JSC.0b013e3181b1b21b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.