362
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimal estimation of complex aerial movements using dynamic optimisation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 300-315 | Received 14 Aug 2021, Accepted 06 Apr 2022, Published online: 07 Jun 2022

References

  • Ambrósio, J. A. C., & Kecskeméthy, A. (2007). Multibody dynamics of biomechanical models for human motion via optimization. In J. C. G. Orden, J. M. Goicolea, & J. Cuadrado (Eds.), Multibody dynamics (Vol. 4, pp. 245–272). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5684-0_12
  • Ausejo, S., Suescun, Á., & Celigüeta, J. (2011). An optimization method for overdetermined kinematic problems formulated with natural coordinates. Multibody System Dynamics, 26(4), 397–410. https://doi.org/10.1007/s11044-011-9263-x
  • Ayusawa, K., Venture, G., & Nakamura, Y. (2014). Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. The International Journal of Robotics Research, 33(3), 446–468. https://doi.org/10.1177/0278364913495932
  • Bailly, F., Carpentier, J., Benallegue, M., Watier, B., & Souéres, P. (2019). Estimating the center of mass and the angular momentum derivative for legged locomotion—A recursive approach. IEEE Robotics and Automation Letters, 4(4), 4155–4162. https://doi.org/10.1109/LRA.2019.2931200
  • Bailly, F., Charbonneau, E., Danès, L., & Begon, M. (2021). Optimal 3D arm strategies for maximizing twist rotation during somersault of a rigid-body model. Multibody System Dynamics, 52(2), 193–209. https://doi.org/10.1007/s11044-020-09759-5
  • Bailly, F., Carpentier, J., & Souères, P. (2021). Optimal estimation of the centroidal dynamics of legged robots. ICRA 2021 - IEEE International Conference on Robotics and Automation. https://hal.archives-ouvertes.fr/hal-03193940
  • Bailly, F., Ceglia, A., Michaud, B., Rouleau, D. M., & Begon, M. (2021). Real-time and dynamically consistent estimation of muscle forces using a moving horizon EMG-Marker Tracking Algorithm—Application to upper limb biomechanics. Frontiers in Bioengineering and Biotechnology, 9,112. https://doi.org/10.3389/fbioe.2021.642742
  • Begon, M., Andersen, M. S., & Dumas, R. (2018). Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: A systematized methodological review. Journal of Biomechanical Engineering, 140(3), 030801. https://doi.org/10.1115/1.4038741
  • Bigland-Ritchie, B. R., Furbush, F. H., Gandevia, S. C., & Thomas, C. K. (1992). Voluntary discharge frequencies of human motoneurons at different muscle lengths. Muscle & Nerve, 15(2), 130–137. https://doi.org/10.1002/mus.880150203
  • Bonnet, V., Daune, G., Joukov, V., Dumas, R., Fraisse, P., Kulić, D., Seilles, A., Andary, S., & Venture, G. (2016). A constrained Extended Kalman Filter for dynamically consistent inverse kinematics and inertial parameters identification. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 944–949. https://doi.org/10.1109/BIOROB.2016.7523749
  • Bonnet, V., Richard, V., Camomilla, V., Venture, G., Cappozzo, A., & Dumas, R. (2017). Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. Journal of Biomechanics, 62, 148–155. https://doi.org/10.1016/j.jbiomech.2017.04.033
  • Boone, D. C., & Azen, S. P. (1979). Normal range of motion of joints in male subjects. The Journal of Bone and Joint Surgery American Volume, 61(5), 756–759. https://doi.org/10.2106/00004623-197961050-00017
  • Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2005). Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Medicine & Science in Sports & Exercise, 37(11), 1911–1916. https://doi.org/10.1249/01.mss.0000176684.24008.6f
  • Buss, S. R. (2004). Introduction to Inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1–19), 16.
  • Cahouët, V., Luc, M., & David, A. (2002). Static optimal estimation of joint accelerations for inverse dynamics problem solution. Journal of Biomechanics, 35(11), 1507–1513. https://doi.org/10.1016/S0021-9290(02)00176-8
  • Chao, E.-Y.-S., & Rim, K. (1973). Application of optimization principles in determining the applied moments in human leg joints during gait. Journal of Biomechanics, 6(5), 497–510. https://doi.org/10.1016/0021-9290(73)90008-0
  • Crépeau Rousseau, A. (2014). Développement et validation d’un modèle de simulation numérique personnalisé à une athlète de plongeon. https://papyrus.bib.umontreal.ca/xmlui/handle/1866/10402
  • De Groote, F., De Laet, T., Jonkers, I., & De Schutter, J. (2008). Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. Journal of Biomechanics, 41(16), 3390–3398. https://doi.org/10.1016/j.jbiomech.2008.09.035
  • Dumas, R., Brånemark, R., & Frossard, L. (2017). Gait analysis of transfemoral amputees: Errors in inverse dynamics are substantial and depend on prosthetic design. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6), 679–685. https://doi.org/10.1109/TNSRE.2016.2601378
  • Ehrig, R. M., Taylor, W. R., Duda, G. N., & Heller, M. O. (2006). A survey of formal methods for determining the centre of rotation of ball joints. Journal of Biomechanics, 39(15), 2798–2809. https://doi.org/10.1016/j.jbiomech.2005.10.002
  • Faber, H., Van Soest, A. J., & Kistemaker, D. A. (2018). Inverse dynamics of mechanical multibody systems: An improved algorithm that ensures consistency between kinematics and external forces. Plos One, 13(9), e0204575. https://doi.org/10.1371/journal.pone.0204575
  • Fédération Internationale de Gymnastique. (2020). FIG executive committee (2021). 2022—2024 Code of points. https://www.gymnastics.sport/publicdir/rules/files/en_2022-2024%20ACRO%20CoP.pdf
  • Felis, M. L., Mombaur, K., & Berthoz, A. (2015). An optimal control approach to reconstruct human gait dynamics from kinematic data. 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 1044–1051. https://doi.org/10.1109/HUMANOIDS.2015.7363490
  • Fohanno, V., Colloud, F., Begon, M., & Lacouture, P. (2010). Estimation of the 3D kinematics in kayak using an extended Kalman filter algorithm: A pilot study. Computer Methods in Biomechanics and Biomedical Engineering, 13(sup1), 55–56. https://doi.org/10.1080/10255842.2010.491958
  • Forner-Cordero, A., Koopman, H. J. F. M., & Van der Helm, F. C. T. (2006). Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait & Posture, 23(2), 189–199. https://doi.org/10.1016/j.gaitpost.2005.02.002
  • Forrester, S. E., Yeadon, M. R., King, M. A., & Pain, M. T. G. (2011). Comparing different approaches for determining joint torque parameters from isovelocity dynamometer measurements. Journal of Biomechanics, 44(5), 955–961. https://doi.org/10.1016/j.jbiomech.2010.11.024
  • Frohlich, C. The physics of somersaulting and twisting. (1980). Scientific American, 242(3), 154–165. JSTORR. https://doi.org/10.1038/scientificamerican0380-154
  • Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1), 99–131. https://doi.org/10.1137/S0036144504446096
  • Günal, I., Köse, N., Erdogan, O., Göktürk, E., & Seber, S. (1996). Normal range of motion of the joints of the upper extremity in male subjects, with special reference to side. The Journal of Bone & Joint Surgery, 78(9), 1401. https://doi.org/10.2106/00004623-199609000-00017
  • Happee, R., & Van der Helm, F. C. T. (1995). The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. Journal of Biomechanics, 28(10), 1179–1191. https://doi.org/10.1016/0021-9290(94)00181-3
  • Hoffmann, M., Haering, D., & Begon, M. (2017). Comparison between line and surface mesh models to represent the rotator cuff muscle geometry in musculoskeletal models. Computer Methods in Biomechanics and Biomedical Engineering, 20(11), 1175–1181. https://doi.org/10.1080/10255842.2017.1340463
  • Koh, M. T. H., & Jennings, L. S. (2003). Dynamic optimization: Inverse analysis for the Yurchenko layout vault in women’s artistic gymnastics. Journal of Biomechanics, 36(8), 1177–1183. https://doi.org/10.1016/S0021-9290(03)00085-X
  • Kuo, A. D. (1998). A least-squares estimation approach to improving the precision of inverse dynamics computations. Journal of Biomechanical Engineering, 120(1), 148–159. https://doi.org/10.1115/1.2834295
  • Martelli, S., Veeger, H. E., & Van der Helm, F. C. (2008). Scaling of a shoulder musculoskeletal model does not lead to significant improvements. Proceedings of the 7th Conference of the International Shoulder Group.
  • Mentiplay, B. F., Banky, M., Clark, R. A., Kahn, M. B., & Williams, G. (2018). Lower limb angular velocity during walking at various speeds. Gait & Posture, 65, 190–196. https://doi.org/10.1016/j.gaitpost.2018.06.162
  • Michaud, B., Bailly, F., Charbonneau, E., Ceglia, A., Sanchez, L., & Begon, M. (2021). Bioptim, a Python framework for musculoskeletal optimal control in biomechanics. BioRxiv. https://doi.org/10.1101/2021.02.27.432868
  • Michaud, B., & Begon, M. (2021). Biorbd: A C++, Python and MATLAB library to analyze and simulate the human body biomechanics. Journal of Open Source Software, 6(57), 2562. https://doi.org/10.21105/joss.02562
  • Mohammadi, H., Khademi, G., Simon, D., van den Bogert, A. J., & Richter, H. (2020). Upper body estimation of muscle forces, muscle states, and joint motion using an extended Kalman filter. IET Control Theory & Applications, 14(19), 3204–3216. https://doi.org/10.1049/iet-cta.2020.0321
  • Nitschke, M., Dorschky, E., Heinrich, D., Schlarb, H., Eskofier, B. M., Koelewijn, A. D., & van den Bogert, A. J. (2020). Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics. Scientific Reports, 10(1), 17655. https://doi.org/10.1038/s41598-020-73856-w
  • Reinbolt, J. A., Schutte, J. F., Fregly, B. J., Koh, B. I., Haftka, R. T., George, A. D., & Mitchell, K. H. (2005). Determination of patient-specific multi-joint kinematic models through two-level optimization. Journal of Biomechanics, 38(3), 621–626. https://doi.org/10.1016/j.jbiomech.2004.03.031
  • Remy, C. D., & Thelen, D. G. (2009). Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait. Journal of Biomechanical Engineering, 131(3). https://doi.org/10.1115/1.3005148
  • Silva, M. P. T., & Ambrósio, J. A. C. (2002). Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody System Dynamics, 8(2), 219–239. https://doi.org/10.1023/A:1019545530737
  • Silva, M. P. T., & Ambrósio, J. A. C. (2004). Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data. Gait & Posture, 19(1), 35–49. https://doi.org/10.1016/S0966-6362(03)00013-4
  • Thelen, D. G., & Anderson, F. C. (2006). Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics, 39(6), 1107–1115. https://doi.org/10.1016/j.jbiomech.2005.02.010
  • Umberger, B. R., & Martin, P. E. (2007). Mechanical power and efficiency of level walking with different stride rates. The Journal of Experimental Biology, 210(18), 3255–3265. https://doi.org/10.1242/jeb.000950
  • van den Bogert, A. J., Blana, D., & Heinrich, D. (2011). Implicit methods for efficient musculoskeletal simulation and optimal control. Procedia IUTAM, 2, 297–316. https://doi.org/10.1016/j.piutam.2011.04.027
  • Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., Van Duijkeren, N., Zanelli, A., Novoselnik, B., Albin, T., Quirynen, R., & Diehl, M. 2020. Acados: A modular open-source framework for fast embedded optimal control. http://arxiv.org/abs/1910.13753
  • Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y
  • Yeadon, M. R. (1990). The simulation of aerial movement—i. the determination of orientation angles from film data. Journal of Biomechanics, 23(1), 59–66. https://doi.org/10.1016/0021-9290(90)90369-E
  • Yeadon, M. R., & Trewartha, G. (2003). Control strategy for a hand balance. Motor Control, 7(4), 421–442. https://doi.org/10.1123/mcj.7.4.421
  • Yeadon, M. R., & Hiley, M. J. (2014). The control of twisting somersaults. Journal of Biomechanics, 47(6), 1340–1347. https://doi.org/10.1016/j.jbiomech.2014.02.006
  • Żuk, M., Syczewska, M., & Pezowicz, C. (2018). Influence of uncertainty in selected musculoskeletal model parameters on muscle forces estimated in inverse dynamics-based static optimization and hybrid approach. Journal of Biomechanical Engineering, 140(12). https://doi.org/10.1115/1.4040943

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.