420
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Kinematic and dynamic analyses of the front crawl tumble turn in elite female swimmers

, , ORCID Icon &
Pages 1683-1699 | Received 18 Jan 2021, Accepted 29 Apr 2022, Published online: 08 Jun 2022

References

  • Abdel-Aziz, Y. I., & Karara, H. M. (1971). Direct linear transformation from comparator coordinates into object space coordinates in close range photogrammetry. In The American Society of Photogrammetry (Ed.), Proceedings of the Symposium on Close Range Photogrammetry (pp. 1–18). American Society of Photogrammetry.
  • Arellano, R., Brown, P., Cappaert, J., & Nelson, R. C. (1994). Analysis of 50-, 100-, and 200-m freestyle swimmers at the 1992 olympic games. Journal of Applied Biomechanics, 10(2), 189–199.
  • Australian Institute of Sport, Biomechanics Department. (2000). Canberra, Australian Capital Territory, Australia.
  • Bender, R., & Lange, S. (2001). Adjusting for multiple testing—when and how? Journal of Clinical Epidemiology, 54(4), 343–349.
  • Blanksby, B. A., Gathercole, D. G., & Marshall, R. N. (1996). Force platform and video analysis of the tumble turn by age group swimmers. Journal of Swimming Research, 11, 40–45.
  • Challis, J. H., & Kerwin, D. G. (1992). Accuracy assessment and control point configuration when using the DLT for photogrammetry. Journal of Biomechanics, 25(9), 1053–1058.
  • Chen, L., Armstrong, C. W., & Raftopoulos, D. D. (1994). An investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique. Journal of Biomechanics, 27(4), 493–500.
  • Chollet, D. (1997). Natation sportive: Approche scientifique (2nd ed.). Vigot.
  • Chow, J., Hay, J., Wilson, B., & Imel, C. (1984). Turning techniques of elite swimmers. Journal of Sports Sciences, 2(3), 241–255.
  • Cossor, J. M., Blanksby, B. A., & Elliott, B. C. (1999). The influence of plyometric training on the freestyle tumble turn. Journal of Science and Medicine in Sport, 2(2), 106–116.
  • Costill, D. L., Kovaleski, J., Porter, D., Kirwan, J., Fielding, R., & King, D. (1985). Energy expenditure during front crawl swimming: Predicting success in middle-distance events. International Journal of Sports Medicine, 6(05), 266–270.
  • Costill, D. L., Maglischo, E. W., & Richardson, A. B. (1992). Swimming. Blackwell Scientific Publications.
  • Domenici, P., Batty, R. S., Similä, T., & Ogam, E. (2000). Killer whales (orcinus orca) feeding on schooling herring (clupea harengus) using underwater tail-slaps: Kinematic analyses of field observations. The Journal of Experimental Biology, 203(2), 282–294.
  • Elipot, M., Hellard, P., Taïar, R., Boissière, E., Rey, J. L., Lecat, S., & Houel, N. (2009). Analysis of swimmers’ velocity during the underwater gliding motion following grab start. Journal of Biomechanics, 42(9), 1367–1370.
  • Elipot, M., Dietrich, G., Hellard, P., & Houel, N. (2010). High-Level swimmers’ kinetic efficiency during the underwater phase of a grab start. Journal of Applied Biomechanics, 26(4), 501–507.
  • Figueiredo, P., Machado, L., Vilas-Boas, J. P., & Fernandes, R. J. (2011). Reconstruction error of calibration volume’s coordinates for 3D swimming kinematics. Journal of Human Kinetics, 29, 35–40.
  • Hawley, J. A., Williams, M. M., Vickovic, M. M., & Handcock, P. J. (1992). Muscle power predicts freestyle swimming performance. British Journal of Sports Medicine, 26(3), 151–155.
  • Hay, J. (1988). The status of research on the biomechanics of swimming. In B. E. Ungerechts, K. Wilke, & K. Reischle (Eds.), Swimming science V (pp. 3–14). Human Kinetics Books.
  • Jakubowska, M., & Kubiak, W. (2004). Adaptive-degree polynomial filter for voltammetric signals. Analytica Chimica Acta, 512(2), 241–250.
  • Koo, T.K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163.
  • Lyttle, A. D., & Mason, B. A. (1997). A kinematic and kinetic analysis of the freestyle and butterfly turns. Journal of Swimming Research, 12, 7–11.
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1998). The effect of depth and velocity on drag during the streamlined glide. Journal of Swimming Research, 13, 15–22. https://doi.org/10.1123/jab.15.3.242
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1999). Investigating kinetics in the freestyle flip turn push-off. Journal of Applied Biomechanics, 15(3), 242–252. https://doi.org/10.1080/026404100419856
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (2000). Net forces during tethered simulation of underwater streamlined gliding and kicking techniques of the freestyle turn. Journal of Sports Sciences, 18(10), 801–807. https://doi.org/10.1080/026404100419856
  • Maglischo, E. W. (2003). Swimming fastest. Human Kinetics.
  • Marinho, D. A., Barbosa, T. M., Neiva, H. P., Silva, A. J., & Morais, J. E. (2020). Comparison of the start, turn and finish performance of elite swimmers in 100 m and 200 m races. Journal of Sports Science & Medicine, 19(2), 397–407.
  • Miyashita, M., Takahashi, S., Troup, J., & Wakayoshi, K. (1992). Leg extension power of elite swimmers. In D. MacLaren, T. Reilly, & A. Lees (Eds.), Swimming science VI (pp. 295–301). E & FN SPON.
  • Morais, J. E., Marinho, D. A., Arellano, R., & Barbosa, T. M. (2019). Start and turn performances of elite sprinters at the 2016 European championships in swimming. Sports Biomechanics, 18(1), 100–114.
  • Nicol, K., & Kruger, F. (1979). Impulses exerted in performing several kinds of swimming turns. In J. Terauds & E. W. Bedingfield (Eds.), Swimming III (pp. 222–232). University Park Press.
  • Nicol, E., Ball, K.A., & Tor, E. (2019). The biomechanics of freestyle and butterfly turn technique in elite swimmers. Sports Biomechanics, 29(4), 1–14. https://doi.org/10.1080/14763141.2018.1561930
  • Novais, M. L., Silva, A. J., Mantha, V. R., Ramos, R. J., Rouboa, A. I., Vilas-Boas, J. P., Luís, S. R., & Marinho, D. A. (2012). The effect of depth on drag during the streamlined glide: A three-dimensional CFD analysis. Journal of Human Kinetics, 33(2012), 55–62.
  • Payton, C., Baltzopoulos, V., & Bartlett, R. (2002). Contributions of rotations of the trunk and upper extremity to hand velocity during front crawl swimming. Journal of Applied Biomechanics, 18(3), 243–256. https://doi.org/10.1123/jab.10.2.189
  • Pereira, S., Araujo, L., Freitas, E., Gatti, R., Silveira, G., & Roesler, H. (2006a). Biomechanical analysis of the turn in front crawl swimming. Portuguese Journal of Sport Sciences, 6(suppl 2), S77–S79.
  • Pereira, S., Araujo, L. G., Gonçalves, P., & Vilas-Boas, J. P. (2006b). “Epidemiological” analysis of the freestyle turning techniques used in top level 521 swimming. Portuguese Journal of Sport Sciences, 6(suppl 1), 110.
  • Pereira, S. M., Ruschel, C., Souza, T. G., Araujo, L. G., Gonçalves, P., Fernandes, R., & Vilas-Boas, J. P. (2011). Comparative analysis of temporal parameters of different techniques of the freestyle flip turn. Vilas-Boas, Machado, Kim, Veloso (eds.). Biomechanics in Sports 29. Portuguese Journal of Sport Sciences, 11(Suppl 2), S359–S362.
  • Pereira, S. M., Ruschel, C., Hubert, M., Machado, L., Roesler, H., Fernandes, R. J., & Vilas-Boas, J. P. (2015). Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques. Journal of Sports Sciences, 33(19).
  • Prins, J. H., & Patz, A. (2006). The influence of tuck index, depth of foot-plant, and wall contact time on the velocity of push-off in the freestyle flip turn. Portuguese Journal of Sport Sciences, 6(Suppl 2), S82–S85.
  • Psycharakis, S. G., Sanders, R., & Mill, F. (2005). A calibration frame for 3D swimming analysis. In Q. Wang, (Ed.), Proceedings of the XXIII International Symposium on Biomechanics in Sports (pp. 901–904). The China Institute of Sports Sciences.
  • Puel, F. (2011). Three-dimensional kinematic and dynamic analysis of the crawl tumble turn performance: expertise and gender effects [ Thesis for PhD presented at the University of Bordeaux 1].
  • Puel, F., Morlier, J., Mesnard, M., Cid, M., & Hellard, P. (2011). Three-Dimensional kinematic and dynamic analysis of the crawl tumble turn performance: The expertise effect. Computer Methods in Biomechanics and Biomedical Engineering, 14(Suppl 1), S215–S216.
  • Puel, F., Morlier, J., Avalos, M., Mesnard, M., Cid, M., & Hellard, P. (2012). 3D kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers. Journal of Biomechanics, 45(3), 510–515.
  • Roesler, H. (1997). Development of underwater platform for force and force moment measurement in all coordinated axes for biomechanical applications [ PhD Thesis]. Federal University of Rio Grande do Sul.
  • Roesler, H. (2003). Turning force measurement in swimming using underwater force platforms. In J. C. Chatard (Ed.), Biomechanics and medicine in swimming IX (pp. 243–248). Publications de l’Université de Saint-Etienne.
  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639.
  • Seifert, L., Puel, F., Komar, J., & Guignard, B. 2018. How visual information constraints the approach of the wall for the tumble turn? In Japanese Society of Sciences in Swimming and Water Exercise (Ed.), Biomechanics and medicine in swimming (Vol. XIII). 135–139.
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611.
  • Sibella, F., Frosio, I., Schena, F., & Borghese, N. A. (2007). 3D analysis of the body center of mass in rock climbing. Human Movement Science, 26(6), 841–852.
  • Silveira, G. A. (2007). Proposição de uma metodologia para coleta de dados da virada no nado crawl. CEFID, UDESC.
  • Silveira, G. A., Araujo, L. G., Freitas, E. S., Schütz, G. R., de Souza, T. G., Pereira, S. M., & Roesler, H. (2011). Proposal for standardization of the distance for analysis of freestyle flip-turn performance. Revista Brasileira de Cineantropometria & Desempenho Humano, 13, 177–182.
  • Staggs, J. E. J. (2005). Savitzky–Golay smoothing and numerical differentiation of cone calorimeter mass data. Fire Safety Journal, 40(6), 493–505.
  • Stevens, J. (1986). Applied multivariate statistics for the social sciences (p. 72). Erlbaum.
  • Takahashi, G., Yoshida, A., Tsubakimoto, S., & Miyashita, M. (1983). Propulsive force generated by swimmers during a turning motion. In A. P. Hollander, P. A. Huijing, & G. de Groot (Eds.), Biomechanics and medicine in swimming IV (pp. 192–198). Human Kinetics Publishers.
  • Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39.
  • Thayer, A., & Hay, J. (1984). Motivating start and turn improvement. Swimming Technique, 20(4), 17–20.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  • Vaiphasa, C. (2006). Consideration of smoothing techniques for hyperspectral remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2), 91–99.
  • Vennell, R., Pease, D., & Wilson, B. (2006). Wave drag on human swimmers. Journal of Biomechanics, 39(4), 664–671.
  • Vilas-Boas, J. P., & Fernandes, R. J. (2003). Swimming starts and turns: Determinant factors of swimming performance. In M. Sidney & P. Pelayo (Eds.), Actes des 3èmesjournées Spécialisées de Natation (pp. 84–95). Publibook.
  • Weimar, W., Sumner, A., Romer, B., Fox, J., Rehm, J., Decoux, B., & Patel, J. Kinetic analysis of swimming flip-turn push-off techniques. (2019). Sports (Basel, Switzerland), 7(2), 32. https://doi.org/10.3390/sports7020032
  • Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). Wiley Interscience.
  • Winter, E. M., & Fowler, N. (2009). Exercise defined and quantified according to the Système International d’Unités. Journal of Sports Sciences, 27(5), 447–460.
  • Wood, G. A., & Marshall, R. N. (1986). The accuracy of DLT extrapolation in three-dimensional film analysis. Journal of Biomechanics, 19(9), 781–785.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.