292
Views
1
CrossRef citations to date
0
Altmetric
Review Article

“Selecting the right tool for the job” a narrative overview of experimental methods used to measure or estimate active and passive drag in competitive swimming

, , ORCID Icon, , , , ORCID Icon & show all
Pages 1572-1589 | Received 23 Jun 2021, Accepted 28 Mar 2023, Published online: 20 Apr 2023

References

  • Alcock, A., & Mason, B. (2007). Biomechanical analysis of active drag in swimming. In Proceedings of the 25th International Symposium of Biomechanics in Sports (pp. 212–215). https://ojs.ub.uni-konstanz.de/cpa/article/view/438/378
  • Alexander, D. E. (1990). Drag coefficients of swimming animals: Effects of using different reference areas. The Biological Bulletin, 179(2), 186–190. https://doi.org/10.2307/1541768
  • Amar, J. (1920). The human motor. George Routledge & Sons, Ltd.
  • Andersen, J. T., & Sanders, R. H. (2018). A systematic review of propulsion from the flutter kick–what can we learn from the dolphin kick? Journal of Sports Sciences, 36(18), 2068–2075. https://doi.org/10.1080/02640414.2018.1436189
  • Barbosa, T. M., Morais, J. E., Forte, P., Neiva, H., Garrido, N. D., Marinho, D. A., & Del Alamo, J. C. (2015). A comparison of experimental and analytical procedures to measure passive drag in human swimming. PLoS One, 10(7), e0130868. https://doi.org/10.1371/journal.pone.0130868
  • Benjanuvatra, N., Blanksby, B. A., & Elliott, B. C. (2001). Morphology and hydrodynamic resistance in young swimmers. Pediatric Exercise Science, 13(3), 246–255. https://doi.org/10.1123/pes.13.3.246
  • Chatard, J. C., Bourgoin, B., & Lacour, J. R. (1990). Passive drag is still a good evaluator of swimming aptitude. European Journal of Applied Physiology and Occupational Physiology, 59(6), 399–404. https://doi.org/10.1007/BF02388619
  • Clarys, J. P. (1978). Relationship of human body form to passive and active hydrodynamic drag. In E. Asmussen & K. Jorgensen (Eds.), Biomechanics VIB (pp. 120–125). University Park Press.
  • Clarys, J. P. (1979). Human morphology and hydrodynamics. In J. Terauds & E. W. Bedingfield (Eds.), Swimming III (pp. 3–41). University Park Press.
  • Clarys, J. P., & Jiskoot, J. (1975). Total resistance of selected body positions in the frontcrawl. In J. P. Clarys & L. Lewillie (Eds.), Swimming II (pp. 110–117). University Park Press.
  • Clarys, J. P., Toussaint, H. M., Bollens, E., Vaes, W., Huijing, P. A., De Groot, G., Hollander, A. P., De Witt, B., & Cabri, J. (1988). Muscular specificity and intensity in swimming against a mechanical resistance - Surface EMG in MAD and free-swimming. In B. E. Ungerechts, K. Wilkie, & K. Reischle (Eds.), Swimming science V (pp. 191–199). Human Kinetics Publishers.
  • Cohen, R. C. Z., Cleary, P. W., & Mason, B. R. (2009). Simulations of human swimming using smoothed particle hydrodynamics. In Proceedings of the 7th International Conference on CFD in the Minerals and Process Industries. https://www.researchgate.net/profile/Raymond-Cohen/publication/274856749_Simulations_of_human_swimming_using_Smoothed_Particle_Hydrodynamics/links/552b66940cf29b22c9c1a924/Simulations-of-human-swimming-using-Smoothed-Particle-Hydrodynamics.pdf
  • Cortesi, M., & Gatta, G. (2015). Effect of the swimmer’s head position on passive drag. Journal of Human Kinetics, 49(1), 37–45. https://doi.org/10.1515/hukin-2015-0106
  • Cortesi, M., Gatta, G., Michielon, G., DiMichele, R., Bartolomei, S., & Scurati, R. (2020). Passive drag in young swimmers: Effects of body composition, morphology and gliding position. International Journal of Environmental Research and Public Health, 17(6), 2002. https://doi.org/10.3390/ijerph17062002.
  • Cossor, J. M., & Mason, B. (2001). Swim start performances at the Sydney 2000 Olympic games. In Proceedings of XIX Symposium on Biomechanics in Sport (pp. 70–74). https://ojs.ub.uni-konstanz.de/cpa/article/view/3870/3588
  • Costa, L., Mantha, V. R., Silva, A. J., Fernandes, R. J., Marinho, D. A., Vilas-Boas, J. P., Machado, L., & Rouboa, A. (2015). Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions. Journal of Biomechanics, 48(10), 2221–2226. https://doi.org/10.1016/j.jbiomech.2015.03.005
  • Di Prampero, P., Pendergast, D., Wilson, D., & Rennie, D. (1974). Energetics of swimming in man. Journal of Applied Physiology, 37(1), 1–5. https://doi.org/10.1152/jappl.1974.37.1.1
  • Du Bois-Reymond, R. (1905). Zur Physiologie des Schwimmens. Arch Anat Physiol Abt Physiol, 29, 252–278.
  • Formosa, D. P., Toussaint, H. M., Mason, B. R., & Burkett, B. (2012). Comparative analysis of active drag using the MAD system and an assisted towing method in front crawl swimming. Journal of Applied Biomechanics, 28(6), 746–750. https://doi.org/10.1123/jab.28.6.746
  • Gatta, G., Cortesi, M., Fantozzi, S., & Zamparo, P. (2015). Planimetric frontal area in the four swimming strokes: Implications for drag, energetics and speed. Human Movement Science, 39, 41–54. https://doi.org/10.1016/j.humov.2014.06.010
  • Gonjo, T., Narita, K., McCabe, C., Fernandes, R. J., Vilas-Boas, J. P., Takagi, H., & Sanders, R. (2020). Front crawl is more efficient and has smaller active drag than backstroke swimming: Kinematic and kinetic comparison between the two techniques at the same swimming speeds. Frontiers in Bioengineering and Biotechnology, 8, 1134. https://doi.org/10.3389/fbioe.2020.570657
  • Guimaraes, A. C., & Hay, J. G. (1985). A mechanical analysis of the grab starting technique in swimming. Journal of Applied Biomechanics, 1(1), 25–35. https://doi.org/10.1123/ijsb.1.1.25
  • Havriluk, R. (2005). A meta-analysis of passive drag force. Research Quarterly for Exercise and Sport, 76(2), 112–118. https://doi.org/10.1080/02701367.2005.10599273
  • Hollander, A. P., De Groot, G. J., van Ingen Schenau, H. M., Toussaint, H., de Best, H., Peeters, W., Meulemans, A., & Schreurs, A. W. (1986). Measurement of active drag during front crawl arm stroke swimming. Journal of Sports Sciences, 4(1), 21–30. https://doi.org/10.1080/02640418608732094
  • Jiskoot, J., & Clarys, J. P. (1975). Body resistance on and under the water surface. In J. P. Clarys & L. Lewillie (Eds.), Swimming II (pp. 105–109). University Park Press.
  • Karpovich, P. (1933). Water resistance in swimming. Research Quarterly, 4(3), 21–28. https://doi.org/10.1080/23267402.1933.10626627
  • Kjendlie, P. L., & Stallman, R. K. (2008). Drag characteristics of competitive swimming children and adults. Journal of Applied Biomechanics, 24(1), 35–42. https://doi.org/10.1123/jab.24.1.35
  • Kolmogorov, S. V. (2008). Kinematic and dynamic characteristics of steady-state non-stationary motion of elite swimmers. Russian Journal of Biomechanics, 12(4), 56–70. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=eaab43d5add75eda8826545d39228b31cec59718
  • Kolmogorov, S. V., & Duplishcheva, O. A. (1992). Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. Journal of Biomechanics, 25(3), 311–318. https://doi.org/10.1016/0021-9290(92)90028-Y
  • Kolmogorov, S. V., Rumyantseva, O. A., Gordon, B. J., & Cappaert, J. M. (1997). Hydrodynamic characteristics of competitive swimmers of different genders and performance levels. Journal of Applied Biomechanics, 13(1), 88–97. https://doi.org/10.1123/jab.13.1.88
  • Kolmogorov, S., Vorontsov, A., & Vilas-Boas, J. P. (2021). Metabolic power, active drag, mechanical and propelling efficiency of elite swimmers at 100 meter events in different competitive swimming techniques. Applied Sciences, 11(18), 8511. https://doi.org/10.3390/app11188511
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1998). The effect of depth and velocity on drag during the streamlined guide. Journal of Swimming Research, 13(1), 15–22.
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1999). Investigating kinetics in the freestyle flip turn push-off. Journal of Applied Biomechanics, 15(3), 242–252. https://doi.org/10.1123/jab.15.3.242
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (2000). Net forces during tethered simulation of underwater streamlined gliding and kicking techniques of the freestyle turn. Journal of Sports Sciences, 18(10), 801–807. https://doi.org/10.1080/026404100419856
  • Marinho, D. A., Barbosa, T. M., Kjendlie, P. L., Vilas-Boas, J. P., Alves, F. B., Rouboa, A. I., & Silva, A. J. (2009). Swimming simulation: A new tool for swimming research and practical applications. In M. Peters (Ed.), Lecture notes in computational science and engineering – CFD foR sport simulation (pp. 33–62). Springer.
  • Mason, B., Sacilotto, G., & Dingley, A. (2012). Computation of a swimmer’s propulsive force profile from active drag parameters with fluctuating velocity in assisted towing. In ISBS-Conference Proceedings Archive. https://ojs.ub.uni-konstanz.de/cpa/article/view/5274
  • Mason, B., Sacilotto, G., & Menzies, T. (2011). Estimation of active drag using an assisted tow of higher than max swim velocity that allows fluctuating velocity & varying tow force. Portuguese Journal of Sport Sciences, 11, 327–330. https://ojs.ub.uni-konstanz.de/cpa/article/view/4839/4479
  • Mason, B., Toussaint, H., Kolmogorov, S., Wilson, B., Sinclair, P., Schreven, S., Dominguez, R., Sacilotto G., Hazrati P., & Dominguez, R. (2013, September). Recommendations arising from a workshop of experts to make the AIS ATM active drag assessment system more reliable and accurate. In ISBS-Conference Proceedings Archive. https://ojs.ub.uni-konstanz.de/cpa/article/view/5557/5051
  • Morais, J. E., Sanders, R. H., Papic, C., Barbosa, T. M., & Marinho, D. A. (2020). The influence of the frontal surface area and swim velocity variation in front crawl active drag. Medicine and Science in Sports and Exercise, 52(11), 2357–2364. https://doi.org/10.1249/MSS.0000000000002400
  • Naemi, R., Easson, W. J., & Sanders, R. H. (2010). Hydrodynamic glide efficiency in swimming. Journal of Science and Medicine in Sport, 13(4), 444–451. https://doi.org/10.1016/j.jsams.2009.04.009
  • Naemi, R., Psycharakis, S. G., McCabe, C., Connaboy, C., & Sanders, R. H. (2012). Relationships between glide efficiency and swimmers’ size and shape characteristics. Journal of Applied Biomechanics, 28(4), 400–411. https://doi.org/10.1123/jab.28.4.400
  • Naemi, R., & Sanders, R. H. (2008). A “hydrokinematic” method of measuring the glide efficiency of a human swimmer. Journal of Biomechanical Engineering, 130(6), 061016. https://doi.org/10.1115/1.3002764
  • Narita, K., Nakashima, M., & Takagi, H. (2017). Developing a methodology for estimating the drag in front-crawl swimming at various velocities. Journal of Biomechanics, 54, 123–128. https://doi.org/10.1016/j.jbiomech.2017.01.037
  • Narita, K., Ogita, F., Nakashima, M., & Takagi, H. (2018a). Comparison of active drag using the MRT-method and the MAD-system in front crawl swimming. Proceedings from Multidisciplinary Digital Publishing Institute, 2(6), 287. https://doi.org/10.3390/proceedings2060287
  • Narita, K., Ogita, F., Nakashima, M., & Takagi, H. (2018b). The relationship between active drag and swimming velocity during front-crawl swimming. In Proceedings from XIIIth International Symposium on Biomechanics and Medicine in Swimming Proceedings (pp. 84–90).
  • Papic, C., Andersen, J., Naemi, R., Hodierne, R., & Sanders, R. H. (2021). Augmented feedback can change body shape to improve glide efficiency in swimming. Sports Biomechanics. Advance online publication. https://doi.org/10.1080/14763141.2021.1900355
  • Papic, C., Sanders, R. H., Naemi, R., Elipot, M., & Andersen, J. (2020). Improving data acquisition speed and accuracy in sport using neural networks. Journal of Sport Sciences, 39(5), 513–522. https://doi.org/10.1080/02640414.2020.1832735
  • Pendergast, D., Mollendorf, J., Zamparo, P., Termin, A., Bushnell, D., & Paschke, D. (2005). The influence of drag on human locomotion in water. Undersea and Hyperbaric Medicine, 32(1), 45–57. https://www.researchgate.net/profile/Paola-Zamparo/publication/7940286_The_influence_of_drag_on_human_locomotion_in_water/links/0fcfd50ac87090ff8d000000/The-influence-of-drag-on-human-locomotion-in-water.pdf
  • Rovelli, C. (2017). L’ordine del tempo (Vol. 2). Adelphi Edizioni spa.
  • Sacilotto, G., Ball, N., & Mason, B. (2014). A biomechanical review of the techniques used to estimate or measure resistive forces in swimming. Journal of Applied Biomechanics, 30(1), 119–127. https://doi.org/10.1123/jab.2013-0046
  • Sacilotto, G., Ball, N., Mason, B., & Clothier, P. (2014). Investigation of coach ratings of technique and force-time profiles in elite male front crawl sprint swimmers. In Proceedings from 32nd International Conference of Biomechanics in Sports (pp. 146–150). https://ojs.ub.uni-konstanz.de/cpa/article/download/6081/5561
  • Sacilotto, G., Franco, R., Mason, B., & Ball, N. (2013). Investigation of front crawl stroke phases within force-time profiles in elite and sub-elite male sprint swimmers. Journal of Science and Medicine in Sport, 16, 19. https://doi.org/10.1016/j.jsams.2013.10.047
  • Sacilotto, G., Mason, B., & Ball, N. (2012). Intra-reliability of active drag values using the Assisted Towing Method (ATM) approach. In Proceedings from 30th Annual Conference of Biomechanics in Sports. https://ojs.ub.uni-konstanz.de/cpa/article/download/5273/4847
  • Sacilotto, G., Warmenhoven, J., Mason, B., Ball, N., & Clothier, P. (2015). Investigation of Atm propulsion force-time profiles using functional data analysis on front crawl sprint swimmers. In Proceedings from 33rd International Conference of Biomechanics in Sports (pp. 1343–1346). https://ojs.ub.uni-konstanz.de/cpa/article/download/6493/5860
  • Schreven, S., Toussaint, H. M., Smeets, J. B. J., & Beek, P. J. (2013). The effect of different inter-pad distances on the determination of active drag using the measuring active drag system. Journal of Biomechanics, 46(11), 1933–1937. https://doi.org/10.1016/j.jbiomech.2013.05.020
  • Scurati, R., Gatta, G., Michielon, G., & Cortesi, M. (2019). Techniques and considerations for monitoring swimmers’ passive drag. Journal of Sports Sciences, 37(10), 1168–1180. https://doi.org/10.1080/02640414.2018.1547099
  • Starling, R. D., Costill, D. L., Trappe, T. A., Jozsi, A. C., Trappe, S. W., & Goodpaster, B. H. (1995). Effect of swimming suit design on the energy demands of swimming. Medicine and Science in Sports and Exercise, 27(7), 1086–1089. https://doi.org/10.1249/00005768-199507000-00019
  • Takagi, H., Shimizu, Y., & Kodan, N. (1999). A hydrodynamic study of active drag in swimming. JSME International Journal, Series B, 42(2), 171–177. https://doi.org/10.1299/jsmeb.42.171
  • Thow, J. L., Naemi, R., & Sanders, R. H. (2012). Comparison of modes of feedback on glide performance in swimming. Journal of Sports Sciences, 30(1), 43–52. https://doi.org/10.1080/02640414.2011.624537
  • Tor, E., Pease, D., & Ball, K. (2015). How does drag affect the underwater phase of a swimming start? Journal of Applied Biomechanics, 31(1), 8–12. https://doi.org/10.1123/JAB.2014-0081
  • Toussaint, H. M., de Groot, G., Savelberg, H. H. C. M., Vervoorn, K., Hollander, A. P., & van Ingen Schenau, G. J. (1988). Active drag related to velocity in male and female swimmers. Journal of Biomechanics, 21(5), 435–438. https://doi.org/10.1016/0021-9290(88)90149-2
  • Toussaint, H. M., Roos, P. E., & Kolmogorov, S. (2004). The determination of drag in front crawl swimming. Journal of Biomechanics, 37(11), 1655–1663. https://doi.org/10.1016/j.jbiomech.2004.02.020
  • Toussaint, H. M., & Truijens, M. (2005). Biomechanical aspects of peak performance in human swimming. Animal Biology, 55(1), 17–40. https://doi.org/10.1163/1570756053276907
  • van der Vaart, A. J., Savelberg, H. H., de Groot, G., Hollander, A. P., Toussaint, H. M., & van Ingen Schenau, G. J. (1987). An estimation of drag in front crawl swimming. Journal of Biomechanics, 20(5), 543–546. https://doi.org/10.1016/0021-9290(87)90254-5
  • Veiga, S., Cala, A., Mallo, J., & Navarro, E. (2013). A new procedure for race analysis in swimming based on individual distance measurements. Journal of Sports Sciences, 31(2), 159–165. https://doi.org/10.1080/02640414.2012.723130
  • Vennell, R., Pease, D., & Wilson, B. (2006). Wave drag on human swimmers. Journal of Biomechanics, 39(4), 664–671. https://doi.org/10.1016/j.jbiomech.2005.01.023
  • Vilas-Boas, J. P., Costa, L., Fernandes, R. J., Ribeiro, J., Figueiredo, P., Marinho, D., Silva, A. J., Rouboa, A., & Machado, L. (2010). Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke. Journal of Applied Biomechanics, 26(3), 324–331. https://doi.org/10.1123/jab.26.3.324
  • von Loebbecke, A., Mittal, R., Mark, R., & Hahn, J. (2009). A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomechanics, 8(1), 60–77. https://doi.org/10.1080/14763140802629982
  • Webb, A., Banks, J., Phillips, C., Hudson, D., Taunton, D., & Turnock, S. (2011). Prediction of passive and active drag in swimming. Proceedings from 5th Asia-Pacific Congress on Sports Technology (APCST), Procedia Engineering, 13, 133–140. https://doi.org/10.1016/j.proeng.2011.05.063
  • Webb, A., Taunton, D. J., Hudson, D. A., Alexander, F., J, I., & Turnock, S. R. (2015). Repeatable techniques for assessing changes in passive swimming resistance. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 229(2), 126–135. https://doi.org/10.1177/1754337114562875
  • Wilson, B., & Thorp, R. (2003). Active drag in swimming. In Proceedings from Biomechanics and medicine in swimming IX (pp. 15–20). https://www.academia.edu/download/50577530/9_15-20_Wilson.pdf
  • Xin-Feng, W., Lian-Ze, W., Wei-Xing, Y., De Jian, L., & Xiong, S. (2007). A new device for estimating active drag in swimming at maximal velocity. Journal of Sports Sciences, 25(4), 375–379. https://doi.org/10.1080/02640410600812021
  • Yanai, T. (2001). What causes the body to roll in front-crawl swimming? Journal of Applied Biomechanics, 17(1), 28–42. https://doi.org/10.1123/jab.17.1.28
  • Zamparo, P., Gatta, G., Pendergast, D., & Capelli, C. (2009). Active and passive drag: The role of trunk incline. European Journal of Applied Physiology, 106(2), 195–205. https://doi.org/10.1007/s00421-009-1007-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.