156
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Voyage of theranostic liposomes for imaging and therapy

, &
Pages 245-249 | Received 10 Jul 2016, Accepted 03 Jan 2017, Published online: 01 Mar 2017

References

  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–182.
  • Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44(10):1123–1134.
  • Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44(10):1029–1138.
  • Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44(10):1094–1104.
  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011;6(4):715–728.
  • Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44(10):1050–1060.
  • Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface active agents as observed in electron microscope. J Mol Biol. 1964;8:660–668.
  • Moghimi SM, Hunter AC, Murry JC. Nanomedicine: current status and future prospects. FASEB J 2005;19(3):311–330.
  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011;6(4):715–728.
  • Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, et al. PEGylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol. 1998;16(7):2445–2451.
  • Verma S, Dent S, Chow BJ, Rayson D, Safra T. Metastatic breast cancer: the role of PEGylated liposomal doxorubicin after conventional anthracyclines. Cancer Treat Rev. 2008;34(5):391–406.
  • Minisini AM, Andreetta C, Fasola G, Puglisi F. PEGylated liposomal doxorubicin in elderly patients with metastatic breast cancer. Expert Rev Anticancer Ther. 2008;8(3):331–342.
  • John W Park. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):95–99.
  • Celsion Corporation. Clinical trials. http:www/celsion.com/trials.cfm. [Accessed 31 January 2013].
  • Bangham AD. Surrogate cells or trojan horses. The discovery of liposomes. Bioessays. 1995;17(12):1081–1088.
  • Sun BY, Lim DSW, Kuo JS, Kuyper CL, Chiu DT. Fast initiation of chemical reactions with laser-induced breakdown of a nanoscale partition. Langmuir. 2004;20(22):9437–9440.
  • Lasic DD. Liposomes: from physics to applications. Amsterdam; New York: Elsevier, (OCoLC) 624436056; 1993.
  • Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Ajcta. 1992;171:1108–1113.
  • Lasic DD, Needham D. The stealth liposome: a prototypical biomaterial. Chem Rev. 1995;95(8):2601–2627.
  • Allen TM, Papahadjopoulos D. Sterically stabilized liposomes: pharmacokinetic and therapuetic advantages in sterically stabilized liposomes. Liposome Technol. 1993;3:59–72.
  • Allen TM. Long-circulating sterically stabilized liposomes for targeted drug delivery. Trends Pharm Sci. 1994;15:215–220.
  • Naper DH. Polymeric stabilization of colloidal dispersions. Academic Press; 1993.
  • Winterhalter M, Klotz KH, Lasic DD, Benz R. Electric field induced breakdown of lipid membranes. Prog Colloid Polym Sci. 1995;98:228–232.
  • Ringsdorf H, Sackmann E, Simon J, Winnik FM. Interactions of liposomes and hydrophobically-modified poly (n-isopropylacrylamides): an attempt to model the cytoskeleton. Biochim Biophys Acta. 1993;1153:335–344.
  • Al-Jamal WT, Kostarelos K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine. 2007;2:85–98.
  • Tian B, Al-Jamal WT, Al-Jamal KT, Kostarelos K. Doxorubicin-loaded lipid-quantum dot hybrids: surface topography and release properties. Int J Pharm. 2011;416(2):443–447.
  • Jain S, Mishra V, Singh P, Dubey PK, Saraf DK, Vyas SP. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm. 2003;261(1–2):43–55.
  • Martina MS, Fortin JP, Menager C, Clément O, Barratt G, Grabielle-Madelmont C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc. 2005;127(30):10676–10685.
  • Weng KC, Noble CO, Papahadjopoulos SB, Chen FF, Drummond DC, Kirpotin DB, et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 2008;8(9):2851–2857.
  • Chen AA, Derfus AM, Khetani SR, Bhatia, SN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 2005;33(22):190.
  • Margolis LB, Namiot VA, Kljukin LM. Magnetoliposomes: another principle of cell sorting. Biochim Biophys Acta. 1983;735(1):193–195.
  • Grange C, Geninatti CS, Esposito G, Alberti D, Tei L, Bussolati B, et al. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced kaposi’s sarcoma. Cancer Res. 2010;70(6):2180–2190.
  • De Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release. 2011;150(1):102–110.
  • Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med. 2004;51(6):1153–1162.
  • Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004;14(9):497–504.
  • Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn. 2006;6(2):231–244.
  • Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.
  • Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72.
  • Ballou B, Ernst LA, Waggoner AS. Waggoner AS. Fluorescence imaging of tumors in vivo. Curr Med Chem. 2005;12(7):795–805.
  • Song L, Hennink EJ, Young IT, Tanke HJ. Photobleaching kinetics of fluoresce in quantitative fluorescence microscopy. Biophys J. 1995;68(6):2588–2600.
  • Jiang W, Papa E, Fischer H, Mardyani S, Chan WC. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol. 2004;22(12):607–619.
  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–1762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.