316
Views
28
CrossRef citations to date
0
Altmetric
Original Article

The profiles of soluble adhesion molecules in the “great obstetrical syndromes”*

, , , , , , , , , , & show all
Pages 2113-2136 | Received 02 May 2017, Accepted 09 Jan 2018, Published online: 01 Feb 2018

References

  • Sacks GP, Studena K, Sargent K, et al. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998;179(1):80–86.
  • Naccasha N, Gervasi MT, Chaiworapongsa T, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol. 2001;185(5):1118–1123.
  • Watts DH, Krohn MA, Wener MH, et al. C-reactive protein in normal pregnancy. Obstet Gynecol. 1991;77(2):176–180.
  • Belo L, Santos-Silva A, Rocha S, et al. Fluctuations in C-reactive protein concentration and neutrophil activation during normal human pregnancy. Eur J Obstet Gynecol Reprod Biol. 2005;123(1):46–51.
  • Romero R, Rickles FR, Matthews E, et al. Fibrinopeptide A during normal pregnancy. Am J Perinatol. 1988;5(1):70–73.
  • van Buul EJ, Steegers EA, Jongsma HW, et al. Haematological and biochemical profile of uncomplicated pregnancy in nulliparous women; a longitudinal study. Neth J Med. 1995;46(2):73–85.
  • Manten GT, Franx A, Sikkema JM, et al. Fibrinogen and high molecular weight fibrinogen during and after normal pregnancy. Thromb Res. 2004;114(1):19–23.
  • Gallery ED, Raftos J, Gyory AZ, et al. A prospective study of serum complement (C3 and C4) levels in normal human pregnancy: effect of the development of pregnancy-associated hypertension. Aust NZ J Med. 1981;11(3):243–245.
  • Jagadeesan V. Serum complement levels in normal pregnancy and pregnancy-induced hypertension. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 1988;26(3):389–391.
  • Richani K, Soto E, Romero R, et al. Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med. 2005;17(4):239–245.
  • Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803–815.
  • Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103(5):398–406.
  • Pate M, Damarla V, Chi DS, et al. Endothelial cell biology: role in the inflammatory response. Adv Clin Chem. 2010;52:109–130.
  • Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers. 2011;16(Suppl1):S11–S21.
  • Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013;123(2):540–541.
  • Radi ZA, Kehrli ME Jr, Ackermann MR. Cell adhesion molecules, leukocyte trafficking, and strategies to reduce leukocyte infiltration. J Vet Intern Med. 2001;15(6):516–529.
  • Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–689.
  • Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol. 2008;172(1):1–7.
  • Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707.
  • Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res. 2015;107(3):321–330.
  • Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res. 2015;107(3):310–320.
  • Bevilacqua MP, Nelson RM. Selectins. J Clin Invest. 1993;91(2):379–387.
  • Petruzzelli L, Takami M, Humes HD. Structure and function of cell adhesion molecules. Am J Med. 1999;106(4):467–476.
  • Kneuer C, Ehrhardt C, Radomski MW, et al. Selectins – potential pharmacological targets? Drug Discov Today. 2006;11(21–22):1034–1040.
  • Smith CW. Adhesion molecules and receptors. J Allergy Clin Immunol. 2008;121(2 Suppl):S375–S9; quiz S414.
  • Zarbock A, Ley K, McEver RP, et al. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118(26):6743–6751.
  • Telen MJ. Cellular adhesion and the endothelium: E-selectin, L-selectin, and pan-selectin inhibitors. Hematol Oncol Clin North Am. 2014;28(2):341–354.
  • Garton KJ, Gough PJ, Raines EW. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol. 2006;79(6):1105–1116.
  • Abe E, Matsubara K, Ochi H, et al. Elevated levels of adhesion molecules derived from leukocytes and endothelial cells in patients with pregnancy-induced hypertension. Hypertens Pregnancy. 2003;22(1):31–43.
  • Abe Y, El-Masri B, Kimball KT, et al. Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion. Arterioscler Thromb Vasc Biol. 1998;18(5):723–731.
  • Austgulen R, Lien E, Vince G, et al. Increased maternal plasma levels of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin) in preeclampsia. Eur J Obstet Gynecol Reprod Biol. 1997;71(1):53–58.
  • Kim SY, Ryu HM, Yang JH, et al. Maternal serum levels of VCAM-1, ICAM-1 and E-selectin in preeclampsia. J Korean Med Sci. 2004;19(5):688–692.
  • Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2 Pt 1):499–506.
  • Gervasi MT, Chaiworapongsa T, Pacora P, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol. 2001;185(4):792–797.
  • Chaiworapongsa T, Gervasi MT, Refuerzo J, et al. Maternal lymphocyte subpopulations (CD45RA + and CD45RO+) in preeclampsia. Am J Obstet Gynecol. 2002;187(4):889–893.
  • Redman CW, Sargent IL. Preeclampsia and the systemic inflammatory response. Semin Nephrol. 2004;24(6):565–570.
  • Chaemsaithong P, Chaiworapongsa T, Romero R, et al. Maternal plasma soluble TRAIL is decreased in preeclampsia. J Matern Fetal Neonatal Med. 2014;27(3):217–227.
  • Chaiworapongsa T, Romero R, Korzeniewski SJ, et al. Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am J Obstet Gynecol. 2013;208(4):287.e1–287.e15.
  • Bouwland-Both MI, Steegers EA, Lindemans J, et al. Maternal soluble fms-like tyrosine kinase-1, placental growth factor, plasminogen activator inhibitor-2, and folate concentrations and early fetal size: the Generation R study. Am J Obstet Gynecol. 2013;209(2):121.e1–121.11.
  • Johnston TA, Greer IA, Dawes J, et al. Neutrophil activation in small for gestational age pregnancies. Br J Obstet Gynaecol. 1991;98(1):105–106.
  • Sabatier F, Bretelle F, D’Ercole C, et al. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am J Obstet Gynecol. 2000;183(6):1558–1563.
  • Phocas I, Rizos D, Papoulias J, et al. A comparative study of serum soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 in preeclampsia. J Perinatol. 2000;20(2):114–119.
  • Bretelle F, Sabatier F, Blann A, et al. Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses: comparison with pre-eclampsia. BJOG. 2001;108(12):1277–1282.
  • Johnson MR, Anim-Nyame N, Johnson P, et al. Does endothelial cell activation occur with intrauterine growth restriction? BJOG. 2002;109(7):836–839.
  • Coata G, Pennacchi L, Bini V, et al. Soluble adhesion molecules: marker of pre-eclampsia and intrauterine growth restriction. J Matern Fetal Neonatal Med. 2002;12(1):28–34.
  • Crispi F, Domínguez C, Llurba E, et al. Placental angiogenic growth factors and uterine artery Doppler findings for characterization of different subsets in preeclampsia and in isolated intrauterine growth restriction. Am J Obstet Gynecol. 2006;195(1):201–207.
  • Chaiworapongsa T, Espinoza J, Gotsch F, et al. The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation. J Matern Fetal Neonatal Med. 2008;21(1):25–40.
  • Oggé G, Romero R, Chaiworapongsa T, et al. Leukocytes of pregnant women with small-for-gestational age neonates have a different phenotypic and metabolic activity from those of women with preeclampsia. J Matern Fetal Neonatal Med. 2010;23(6):476–487.
  • Soto E, Richani K, Romero R, et al. Increased concentration of the complement split product C5a in acute pyelonephritis during pregnancy. J Matern Fetal Neonatal Med. 2005;17(4):247–252.
  • Mazaki-Tovi S, Vaisbuch E, Romero R, et al. Maternal plasma concentration of the pro-inflammatory adipokine pre-B-cell-enhancing factor (PBEF)/visfatin is elevated in pregnant patients with acute pyelonephritis. Am J Reprod Immunol. 2010;63(3):252–262.
  • Adekola H, Romero R, Chaemsaithong P, et al. Endocan, a putative endothelial cell marker, is elevated in preeclampsia, decreased in acute pyelonephritis, and unchanged in other obstetrical syndromes. J Matern Fetal Neonatal Med. 2015;28(14):1621–1632.
  • Gervasi MT, Chaiworapongsa T, Naccasha N, et al. Phenotypic and metabolic characteristics of maternal monocytes and granulocytes in preterm labor with intact membranes. Am J Obstet Gynecol. 2001;185(5):1124–1129.
  • Assi F, Fruscio R, Bonardi C, et al. PENTRAXIN 3 in plasma and vaginal fluid in women with preterm delivery. BJOG. 2007;114(2):143–147.
  • Cruciani L, Romero R, Vaisbuch E, et al. PENTRAXIN 3 in maternal circulation: an association with preterm labor and preterm PROM, but not with intra-amniotic infection/inflammation. The Journal of Maternal-Fetal & Neonatal Medicine. 2010;23(10):1097–1105.
  • Gervasi MT, Chaiworapongsa T, Naccasha N, et al. Maternal intravascular inflammation in preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2002;11(3):171–175.
  • Greer IA, Lyall F, Perera T, et al. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol. 1994;84(6):937–940.
  • Lyall F, Greer IA, Boswell F, et al. The cell adhesion molecule, VCAM-1, is selectively elevated in serum in pre-eclampsia: does this indicate the mechanism of leucocyte activation? Br J Obstet Gynaecol. 1994;101(6):485–487.
  • Meekins JW, McLaughlin PJ, West DC, et al. Endothelial cell activation by tumour necrosis factor-alpha (TNF-alpha) and the development of pre-eclampsia. Clin Exp Immunol. 1994;98(1):110–114.
  • Fickling SA, Whitley GS, Nussey SS. The cell adhesion molecule, VCAM-1, is selectively elevated in serum in pre-eclampsia: does this indicate the mechanism of leucocyte activation? Br J Obstet Gynaecol. 1995;102(2):173–174.
  • Halim A, Kanayama N, el Maradny E, et al. Plasma P selectin (GMP-140) and glycocalicin are elevated in preeclampsia and eclampsia: their significances. Am J Obstet Gynecol. 1996;174(1 Pt 1):272–277.
  • Djurovic S, Schjetlein R, Wisløff F, et al. Increased levels of intercellular adhesion molecules and vascular cell adhesion molecules in pre-eclampsia. Br J Obstet Gynaecol. 1997;104(4):466–470.
  • Krauss T, Kuhn W, Lakoma C, et al. Circulating endothelial cell adhesion molecules as diagnostic markers for the early identification of pregnant women at risk for development of preeclampsia. Am J Obstet Gynecol. 1997;177(2):443–449.
  • Airoldi L, Gaffuri B, Rossi G, et al. Soluble intercellular adhesion molecule-1 serum profile in physiologic and preeclamptic pregnancy. Am J Reprod Immunol. 1998;39(3):183–188.
  • Budak E, Madazli R, Aksu MF, et al. Vascular cell adhesion molecule-1 (VCAM-1) and leukocyte activation in pre-eclampsia and eclampsia. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 1998;63(2):115–121.
  • Daniel Y, Kupferminc MJ, Baram A, et al. Plasma soluble endothelial selectin is elevated in women with pre-eclampsia. Hum Reprod. 1998;13(12):3537–3541.
  • Higgins JR, Papayianni A, Brady HR, et al. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia. Am J Obstet Gynecol. 1998;179(2):464–469.
  • Hubel CA, Lyall F, Weissfeld L, et al. Small low-density lipoproteins and vascular cell adhesion molecule-1 are increased in association with hyperlipidemia in preeclampsia. Metab Clin Exp. 1998;47(10):1281–1288.
  • Krauss T, Osmers R, Beran J, et al. Soluble adhesion molecules in patients with pre-eclampsia. Losliche Adhasionsmolekule bei Patientinnen mit Praeklampsie. Zentralbl Gynakol. 1998;120(6):279–283.
  • Daniel Y, Kupferminc MJ, Baram A, et al. A selective increase in plasma soluble vascular cell adhesion molecule-1 levels in preeclampsia. Am J Reprod Immunol. 1999;41(6):407–412.
  • Heyl W, Handt S, Reister F, et al. The role of soluble adhesion molecules in evaluating endothelial cell activation in preeclampsia. Am J Obstet Gynecol. 1999;180(1 Pt 1):68–72.
  • Heyl W, Handt S, Reister F, et al. Elevated soluble adhesion molecules in women with pre-eclampsia. Do cytokines like tumour necrosis factor-alpha and interleukin-1beta cause endothelial activation. Eur J Obstet Gynecol Reprod Biol. 1999;86(1):35–41.
  • Madazli R, Budak E, Calay Z, et al. Correlation between placental bed biopsy findings, vascular cell adhesion molecule and fibronectin levels in pre-eclampsia. BJOG. 2000;107(4):514–518.
  • Acar A, Altinbaş A, Oztürk M, et al. Selectins in normal pregnancy, pre-eclampsia and missed abortus. Haematologica. 2001;31(1):33–38.
  • Bowen RS, Moodley J, Dutton MF, et al. Systemic inflammatory indices in pre-eclampsia and eclampsia. J Obstet Gynaecol J Inst Obstet Gynaecol. 2001;21(6):563–569.
  • Oyama R. The relationship between the level of expression of intercellular adhesion molecule-1 in placenta and onset of preeclampsia. J Obstet Gynaecol Res. 2001;27(3):147–154.
  • Aksoy H, Kumtepe Y, Akçay F, et al. Correlation of p-selectin and lipoprotein(a), and other lipid parameters in preeclampsia. Clin Exp Med. 2002;2(1):39–43.
  • Chaiworapongsa T, Romero R, Yoshimatsu J, et al. Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. J Matern Fetal Neonatal Med. 2002;12(1):19–27.
  • Aliefendioğlu D, Erdem G, Tülek N, et al. Neonatal and maternal serum levels of soluble ICAM-1 in preeclamptic and normal pregnancies. Am J Perinatol. 2002;19(6):333–339.
  • Visser W, Beckmann I, Knook MA, et al. Soluble tumor necrosis factor receptor II and soluble cell adhesion molecule 1 as markers of tumor necrosis factor-alpha release in preeclampsia. Acta obstet gynecol Scand. 2002;81(8):713–719.
  • Bersinger NA, Smárason AK, Muttukrishna S, et al. Women with preeclampsia have increased serum levels of pregnancy-associated plasma protein A (PAPP-A), inhibin A, activin A and soluble E-selectin. Hypertens Pregnancy. 2003;22(1):45–55.
  • Anim-Nyame N, Sooranna SR, Johnson MR, et al. Impaired retrograde transmission of vasodilatory signals via the endothelium in pre-eclampsia: a cause of reduced tissue blood flow? Clin Sci (Lond). 2004;106(1):19–25.
  • Aydin S, Benian A, Madazli R, et al. Plasma malondialdehyde, superoxide dismutase, sE-selectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2004;113(1):21–25.
  • Hanisch CG, Pfeiffer KA, Schlebusch H, et al. Adhesion molecules, activin and inhibin – candidates for the biochemical prediction of hypertensive diseases in pregnancy? Arch Gynecol Obstet. 2004;270(2):110–115.
  • Ramsay JE, Ferrell WR, Crawford L, et al. Divergent metabolic and vascular phenotypes in pre-eclampsia and intrauterine growth restriction: relevance of adiposity. J Hypertens. 2004;22(11):2177–2183.
  • Vadachkoria S, Sanchez SE, Qiu C, et al. Hyperhomocyst(e)inemia and elevated soluble vascular cell adhesion molecule-1 concentrations are associated with an increased risk of preeclampsia. Gynecol Obstet Invest. 2004;58(3):133–139.
  • Donker RB, Molema G, Faas MM, et al. Absence of in vivo generalized pro-inflammatory endothelial activation in severe, early-onset preeclampsia. J Soc Gynecol Investig. 2005;12(7):518–528.
  • Heyl W, Heintz B, Reister F, et al. Increased soluble VCAM-1 serum levels in preeclampsia are not correlated to urinary excretion or circadian blood pressure rhythm. J Perinat Med. 2005;33(2):144–148.
  • Vadachkoria S, Woelk GB, Mahomed K, et al. Elevated soluble vascular cell adhesion molecule-1, elevated Homocyst(e)inemia, and hypertriglyceridemia in relation to preeclampsia risk. Am J Hypertens. 2006;19(3):235–242.
  • Lok CA, Nieuwland R, Sturk A, et al. Microparticle-associated p-selectin reflects platelet activation in preeclampsia. Platelets. 2007;18(1):68–72.
  • Chavarría ME, Lara-González L, García-Paleta Y, et al. Adhesion molecules changes at 20 gestation weeks in pregnancies complicated by preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2008;137(2):157–164.
  • Laskowska M, Laskowska K, Leszczyńska-Gorzelak B, et al. sP-selectin in preeclamptic pregnancies with intrauterine normal growth and small-for-gestational-age foetus. Preliminary communication. Med wieku rozwoj. 2009;13(3):212–217.
  • Lok CA, Jebbink J, Nieuwland R, et al. Leukocyte activation and circulating leukocyte-derived microparticles in preeclampsia. Am J Reprod Immunol. 2009;61(5):346–359.
  • Lewis DF, Canzoneri BJ, Gu Y, et al. Maternal levels of prostacyclin, thromboxane, ICAM, and VCAM in normal and preeclamptic pregnancies. Am J Reprod Immunol. 2010;64(6):376–383.
  • Mori T, Shinohara K, Wakatsuki A, et al. Adipocytokines and endothelial function in preeclamptic women. Hypertens Res. 2010;33(3):250–254.
  • Papakonstantinou K, Economou E, Hasiakos D, et al. Antepartum and postpartum maternal plasma levels of E-selectin in pre-eclampsia, gestational proteinuria and gestational hypertension. Eur J Obstet Gynecol Reprod Biol. 2010;153(1):112–113.
  • Robb AO, Din JN, Mills NL, et al. The influence of the menstrual cycle, normal pregnancy and pre-eclampsia on platelet activation. Thromb Haemost. 2010;103(2):372–378.
  • Strijbos MH, Snijder CA, Kraan J, et al. Levels of circulating endothelial cells in normotensive and severe preeclamptic pregnancies. Cytometry B Clin Cytometry. 2010;78(6):382–386.
  • Szarka A, Rigó J Jr, Lázár L, et al. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010;11:59.
  • Molvarec A, Szarka A, Walentin S, et al. Serum heat shock protein 70 levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in women with preeclampsia. Clin Chim Acta. 2011;412(21–22):1957–1962.
  • Molvarec A, Szarka A, Walentin S, et al. Serum leptin levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in normal pregnancy and preeclampsia. Reprod Biol Endocrinol. 2011;9:124.
  • Veas CJ, Aguilera VC, Muñoz IJ, et al. Fetal endothelium dysfunction is associated with circulating maternal levels of sE-selectin, sVCAM1, and sFlt-1 during pre-eclampsia. J Matern Fetal Neonatal Med. 2011;24(11):1371–1377.
  • Xiong Y, Zhou SF, Zhou R, et al. Alternations of maternal and cord plasma hemostasis in preeclampsia before and after delivery. Hypertens Pregnancy. 2011;30(3):347–358.
  • Carty DM, Anderson LA, Freeman DJ, et al. Early pregnancy soluble E-selectin concentrations and risk of preeclampsia. J Hypertens. 2012;30(5):954–959.
  • Fei X, Hongxiang Z, Qi C, et al. Maternal plasma levels of endothelial dysfunction mediators including AM, CGRP, sICAM-1 and tHcy in pre-eclampsia. Adv Clin Exp Med. 2012;21(5):573–579.
  • Mehrabian F, Jazi SM, Javanmard SH, et al. Circulating endothelial cells (CECs) and E-selectin: predictors of preeclampsia. J Res Med Sci Off J Isfahan Univ Med Sci. 2012;17(1):15–21.
  • Farzadnia M, Ayatollahi H, Hasan-Zade M, et al. A comparative study of vascular cell adhesion molecule-1 and high-sensitive C-reactive protein in normal and preeclamptic pregnancies. Interv Med Appl Sci. 2013;5(1):26–30.
  • Laskowska M, Laskowska K, Oleszczuk J. Elevated maternal serum sP-selectin levels in preeclamptic pregnancies with and without intrauterine fetal growth restriction, but not in normotensive pregnancies complicated by isolated IUGR. Med Sci Monit Int Med J Exp Clin Res. 2013;19:118–124.
  • Wei SQ, Audibert F, Luo ZC, et al. Maternal plasma 25-hydroxyvitamin D levels, angiogenic factors, and preeclampsia. Am J Obstet Gynecol. 2013;208(5):390.e1–390.e6.
  • Nasrollahi S, Hoseini Panah SM, Tavilani H, et al. Antioxidant status and serum levels of selectins in pre-eclampsia. J Obstet Gynaecol J Inst Obstet Gynaecol. 2015;35(1):16–18.
  • Tuzcu ZB, Asicioglu E, Sunbul M, et al. Circulating endothelial cell number and markers of endothelial dysfunction in previously preeclamptic women. Am J Obstet Gynecol. 2015;213(4):533.e1–533.e7.
  • Alexander GR, Himes JH, Kaufman RB, et al. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–168.
  • ACOG Practice Bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol. 2002;99:159–167.
  • American College of Obstetricians and Gynecologists. Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. 2013. ISBN 978-1-934984-28-4.
  • von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy. 2003;22(2):143–148.
  • Cunningham FG, Morris GB, Mickal A. Acute pyelonephritis of pregnancy: a clinical review. Obstet Gynecol. 1973;42(1):112–117.
  • Gilstrap LC III, Cunningham FG, Whalley PJ. Acute pyelonephritis in pregnancy: an anterospective study. Obstet Gynecol. 1981;57(4):409–413.
  • Kurmanavicius J, Florio I, Wisser J, et al. Reference resistance indices of the umbilical, fetal middle cerebral and uterine arteries at 24–42 weeks of gestation. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 1997;10(2):112–120.
  • Arduini D, Rizzo G. Normal values of pulsatility Index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J Perinat Med. 1990;18(3):165–172.
  • Trudinger BJ, Cook CM, Giles WB, et al. Fetal umbilical artery velocity waveforms and subsequent neonatal outcome. Br J Obstet Gynaecol. 1991;98(4):378–384.
  • Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–1295.
  • Rizzo V, McIntosh DP, Oh P, et al. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem. 1998;273(52):34724–34729.
  • Garcia-Cardeña G, Comander J, Anderson KR, et al. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA. 2001;98(8):4478–4485.
  • Koo A, Nordsletten D, Umeton R, et al. In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology. Biophys J. 2013;104(10):2295–2306.
  • Bevilacqua MP, Pober JS, Majeau GR, et al. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med. 1984;160(2):618–623.
  • Bevilacqua MP, Pober JS, Wheeler ME, et al. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest. 1985;76(5):2003–2011.
  • Bevilacqua MP, Pober JS, Mendrick DL, et al. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA. 1987;84(24):9238–9242.
  • Yong K, Khwaja A. Leucocyte cellular adhesion molecules. Blood Rev. 1990;4(4):211–225.
  • Jutila MA. Leukocyte traffic to sites of inflammation. APMIS. 1992;100(3):191–201.
  • Williams TJ, Hellewell PG. Endothelial cell biology. Adhesion molecules involved in the microvascular inflammatory response. Am Rev Respir Dis. 1992;146(5 Pt 2):S45–S50.
  • Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J. 1994;8(8):504–512.
  • Panza JA, Quyyumi AA, Brush JE Jr, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–27.
  • Schleiffenbaum B, Spertini O, Tedder TF. Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol. 1992;119(1):229–238.
  • Xing K, Murthy S, Liles WC, et al. Clinical utility of biomarkers of endothelial activation in sepsis – a systematic review. Crit Care. 2012;16(1):R7.
  • Zonneveld R, Martinelli R, Shapiro NI, et al. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit Care. 2014;18(2):204.
  • Nakae H, Endo S, Sato N, et al. Involvement of soluble adhesion molecules in acute pancreatitis. Eur Surg Res Eur Chir Forsch Recherches Chir Eur. 2001;33(5–6):377–382.
  • Powell JJ, Siriwardena AK, Fearon KC, et al. Endothelial-derived selectins in the development of organ dysfunction in acute pancreatitis. Crit Care Med. 2001;29(3):567–572.
  • Shingu M, Hashimoto M, Nobunaga M, et al. Production of soluble ICAM-1 by mononuclear cells from patients with rheumatoid arthritis patients. Inflammation. 1994;18(1):23–34.
  • Krenn V, Schedel J, Döring A, et al. Endothelial cells are the major source of sICAM-1 in rheumatoid synovial tissue. Rheumatol Int. 1997;17(1):17–27.
  • Volin MV. Soluble adhesion molecules in the pathogenesis of rheumatoid arthritis. Curr Pharm Des. 2005;11(5):633–653.
  • Makrilia N, Kollias A, Manolopoulos L, et al. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009;27(10):1023–1037.
  • van Kilsdonk JW, van Kempen LC, van Muijen GN, et al. Soluble adhesion molecules in human cancers: sources and fates. Eur J Cell Biol. 2010;89(6):415–427.
  • Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia. Curr Opin Nephrol Hypertens. 2015;24:131–138.
  • Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996;175(5):1365–1370.
  • Broughton Pipkin F, Roberts JM. Hypertension in pregnancy. J Hum Hypertens. 2000;14(10–11):705–724.
  • Sibai BM. Preeclampsia: an inflammatory syndrome? Am J Obstet Gynecol. 2004;191(4):1061–1062.
  • Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–799.
  • Roberts JM, Gammill HS. Preeclampsia: recent insights. Hypertension. 2005;46(6):1243–1249.
  • Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–1594.
  • Romero R. Prenatal medicine: the child is the father of the man. J MaternFetal Neonat Med. 1996;2009(22 (8)):636–639.
  • Di Renzo GC. The great obstetrical syndromes. J Matern Fetal Neonatal Med. 2009;22(8):633–635.
  • Chaiworapongsa T, Chaemsaithong P, Yeo L, et al. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–480.
  • Myatt L, Roberts JM. Preeclampsia: syndrome or disease? Curr Hypertens Rep. 2015;17(11):83.
  • Robertson WB, Brosens I, Dixon G. Maternal uterine vascular lesions in the hypertensive complications of pregnancy. Perspect Nephrol Hypertens. 1976;5:115–127.
  • Brosens IA. Morphological changes in the utero-placental bed in pregnancy hypertension. Clin Obstet Gynaecol. 1977;4(3):573–593.
  • Sheppard BL, Bonnar J. An ultrastructural study of utero-placental spiral arteries in hypertensive and normotensive pregnancy and fetal growth retardation. Br J Obstet Gynaecol. 1981;88(7):695–705.
  • Roberts JM, Taylor RN, Musci TJ, et al. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–1204.
  • Harrington KF, Campbell S, Bewley S, et al. Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur J Obstet Gynecol Reprod Biol. 1991;42:S14–S20.
  • Harrington K, Cooper D, Lees C, et al. Doppler ultrasound of the uterine arteries: the importance of bilateral notching in the prediction of pre-eclampsia, placental abruption or delivery of a small-for-gestational-age baby. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 1996;7(3):182–188.
  • Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol. 1997;37(3):240–249.
  • Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol. 1998;179(5):1359–1375.
  • Roberts JM. Endothelial dysfunction in preeclampsia. Semin Reprod Endocrinol. 1998;16(1):5–15.
  • Albaiges G, Missfelder-Lobos H, Lees C, et al. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks’ gestation. Obstet Gynecol. 2000;96(4):559–564.
  • Papageorghiou AT, Yu CK, Bindra R, et al. Multicenter screening for preeclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2001;18(5):441–449.
  • Granger JP, Alexander BT, Llinas MT, et al. Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation. 2002;9(3):147–160.
  • Myatt L. Role of placenta in preeclampsia. Endocrine. 2002;19(1):103–111.
  • Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–192.
  • Papageorghiou AT, Yu CK, Nicolaides KH. The role of uterine artery Doppler in predicting adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2004;18(3):383–396.
  • Fisher SJ. The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol. 2004;2:53.
  • Gilbert JS, Ryan MJ, LaMarca BB, et al. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294(2):H541–H550.
  • Ogge G, Chaiworapongsa T, Romero R, et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med. 2011;39(6):641–652.
  • Espinoza J. Recent biomarkers for the identification of patients at risk for preeclampsia: the role of uteroplacental ischemia. Expert Opin Med Diagn. 2012;6(2):121–130.
  • Espinoza J. Uteroplacental ischemia in early- and late-onset pre-eclampsia: a role for the fetus? Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2012;40(4):373–382.
  • George EM, Granger JP. Linking placental ischemia and hypertension in preeclampsia: role of endothelin 1. Hypertension. 2012;60(2):507–511.
  • Roberts JM. Pathophysiology of ischemic placental disease. Semin Perinatol. 2014;38(3):139–145.
  • Bosco C, Díaz E, Gutiérrez R, et al. A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypo. 2015;84(1):72–77.
  • Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.
  • Chaiworapongsa T, Romero R, Espinoza J, et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young investigator award. Am J Obstet Gynecol. 2004;190(6):1541–7; discussion 1547.
  • Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–683.
  • Chaiworapongsa T, Romero R, Kim YM, et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med. 2005;17(1):3–18.
  • Bujold E, Romero R, Chaiworapongsa T, et al. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J Matern Fetal Neonatal Med. 2005;18(1):9–16.
  • Espinoza J, Romero R, Nien JK, et al. A role of the anti-angiogenic factor sVEGFR-1 in the ‘mirror syndrome’ (Ballantyne’s syndrome). J Matern Fetal Neonatal Med. 2006;19(10):607–613.
  • Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.
  • Gotsch F, Romero R, Friel L, et al. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med. 2007;20(11):777–792.
  • Robinson CJ, Johnson DD. Soluble endoglin as a second-trimester marker for preeclampsia. Am J Obstet Gynecol. 2007;197(2):174.e1–174.e5.
  • Schlembach D, Wallner W, Sengenberger R, et al. Angiogenic growth factor levels in maternal and fetal blood: correlation with Doppler ultrasound parameters in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2007;29(4):407–413.
  • Staff AC, Braekke K, Johnsen GM, et al. Circulating concentrations of soluble endoglin (CD105) in fetal and maternal serum and in amniotic fluid in preeclampsia. Am J Obstet Gynecol. 2007;197(2):176.e1–176.e6.
  • Stepan H, Krämer T, Faber R. Maternal plasma concentrations of soluble endoglin in pregnancies with intrauterine growth restriction. J Clin Endocrinol Metab. 2007;92(7):2831–2834.
  • Stepan H, Unversucht A, Wessel N, et al. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertension. 2007;49(4):818–824.
  • Vatten LJ, Eskild A, Nilsen TI, et al. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Am J Obstet Gynecol. 2007;196(3):239.e1–239.e6.
  • Wallner W, Sengenberger R, Strick R, et al. Angiogenic growth factors in maternal and fetal serum in pregnancies complicated by intrauterine growth restriction. Clin Sci (Lond). 2007;112(1):51–57.
  • Wikström AK, Larsson A, Eriksson UJ, et al. Placental growth factor and soluble FMS-like tyrosine kinase-1 in early-onset and late-onset preeclampsia. Obstet Gynecol. 2007;109(6):1368–1374.
  • Baumann MU, Bersinger NA, Mohaupt MG, et al. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol. 2008;199(3):266.e1–266.e6.
  • Romero R, Nien JK, Espinoza J, et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21(1):9–23.
  • Chaiworapongsa T, Romero R, Gotsch F, et al. Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age. J Matern Fetal Neonatal Med. 2008;21(1):41–52.
  • Gotsch F, Romero R, Kusanovic JP, et al. Preeclampsia and small-for-gestational age are associated with decreased concentrations of a factor involved in angiogenesis: soluble Tie-2. J Matern Fetal Neonatal Med. 2008;21(6):389–402.
  • Erez O, Romero R, Espinoza J, et al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med. 2008;21(5):279–287.
  • Crispi F, Llurba E, Domínguez C, et al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;31(3):303–309.
  • De Vivo A, Baviera G, Giordano D, et al. Endoglin, PlGF and sFlt-1 as markers for predicting pre-eclampsia. Acta obstet gynecol Scand. 2008;87(8):837–842.
  • Yinon Y, Nevo O, Xu J, et al. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation via transforming growth factor-beta 3. Am J Pathol. 2008;172(1):77–85.
  • Kusanovic JP, Romero R, Chaiworapongsa T, et al. A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med. 2009;22(11):1021–1038.
  • Chedraui P, Lockwood CJ, Schatz F, et al. Increased plasma soluble fms-like tyrosine kinase 1 and endoglin levels in pregnancies complicated with preeclampsia. J Matern Fetal Neonatal Med. 2009;22(7):565–570.
  • Chaiworapongsa T, Romero R, Kusanovic JP, et al. Plasma soluble endoglin concentration in pre-eclampsia is associated with an increased impedance to flow in the maternal and fetal circulations. Ultrasound Obstet Gynecol. 2010;35(2):155–162.
  • Chaiworapongsa T, Romero R, Tarca AL, et al. A decrease in maternal plasma concentrations of sVEGFR-2 precedes the clinical diagnosis of preeclampsia. Am J Obstet Gynecol. 2010;202(6):550.e1–550.10.
  • Chaiworapongsa T, Romero R, Savasan ZA, et al. Maternal plasma concentrations of angiogenic/anti-angiogenic factors are of prognostic value in patients presenting to the obstetrical triage area with the suspicion of preeclampsia. J Matern Fetal Neonatal Med. 2011;24(10):1187–1207.
  • Soto E, Romero R, Kusanovic JP, et al. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J Matern Fetal Neonatal Med. 2012;25(5):498–507.
  • Romero R, Chaiworapongsa T. Preeclampsia: a link between trophoblast dysregulation and an antiangiogenic state. J Clin Invest. 2013;123(7):2775–2777.
  • Stampalija T, Chaiworapongsa T, Romero R, et al. Maternal plasma concentrations of sST2 and angiogenic/anti-angiogenic factors in preeclampsia. J Matern Fetal Neonatal Med. 2013;26(14):1359–1370.
  • Szabo S, Xu Y, Romero R, et al. Changes of placental syndecan-1 expression in preeclampsia and HELLP syndrome. Virchows Arch. 2013;463(3):445–458.
  • Chaiworapongsa T, Romero R, Korzeniewski SJ, et al. Plasma concentrations of angiogenic/anti-angiogenic factors have prognostic value in women presenting with suspected preeclampsia to the obstetrical triage area: a prospective study. J Matern Fetal Neonatal Med. 2014;27(2):132–144.
  • Chaiworapongsa T, Romero R, Whitten AE, et al. The use of angiogenic biomarkers in maternal blood to identify which SGA fetuses will require a preterm delivery and mothers who will develop pre-eclampsia. J MaternFetal Neonat Med. 2015:1–15.
  • Meeme A, Buga GA, Mammen M, et al. Angiogenic imbalance as a contributor to the pathophysiology of preeclampsia among black African women. J Matern Fetal Neonat Med. 2016:1–7.
  • Cunningham FG, Pritchard JA. Hematologic considerations of pregnancy-induced hypertension. Semin Perinatol. 1978;2(1):29–38.
  • Weenink GH, Treffers PE, Vijn P, et al. Antithrombin III levels in preeclampsia correlate with maternal and fetal morbidity. Am J Obstet Gynecol. 1984;148(8):1092–1097.
  • Romero R, Mazor M, Lockwood CJ, et al. Clinical significance, prevalence, and natural history of thrombocytopenia in pregnancy-induced hypertension. Am J Perinatol. 1989;6(1):32–38.
  • de Boer K, ten Cate JW, Sturk A, et al. Enhanced thrombin generation in normal and hypertensive pregnancy. Am J Obstet Gynecol. 1989;160(1):95–100.
  • Cadroy Y, Grandjean H, Pichon J, et al. Evaluation of six markers of haemostatic system in normal pregnancy and pregnancy complicated by hypertension or pre-eclampsia. Br J Obstet Gynaecol. 1993;100(5):416–420.
  • Chaiworapongsa T, Yoshimatsu J, Espinoza J, et al. Evidence of in vivo generation of thrombin in patients with small-for-gestational-age fetuses and pre-eclampsia. J Matern Fetal Neonatal Med. 2002;11(6):362–367.
  • Dekker G. Prothrombotic mechanisms in preeclampsia. Thromb Res. 2005;115(Suppl1):17–21.
  • Erez O, Romero R, Kim SS, et al. Over-expression of the thrombin receptor (PAR-1) in the placenta in preeclampsia: a mechanism for the intersection of coagulation and inflammation. J Matern Fetal Neonatal Med. 2008;21(6):345–355.
  • Erez O, Romero R, Hoppensteadt D, et al. Tissue factor and its natural inhibitor in pre-eclampsia and SGA. J Matern Fetal Neonatal Med. 2008;21(12):855–869.
  • Kenny LC, Baker PN, Cunningham FG. Platelets, coagulation, and the liver. In: Lindheimer MD, Roberts JM, Cunningham GC, editors. Chesley’s hypertensive disorders of pregnancy. San Diego: Elsevier; 2009. p. 335–351.
  • Socol ML, Weiner CP, Louis G, et al. Platelet activation in preeclampsia. Am J Obstet Gynecol. 1985;151(4):494–497.
  • Romero R, Lockwood C, Oyarzun E, et al. Toxemia: new concepts in an old disease. Semin Perinatol. 1988;12(4):302–323.
  • Csaicsich P, Deutinger J, Tatra G. Platelet specific proteins (beta-thromboglobulin and platelet factor 4) in normal pregnancy and in pregnancy complicated by preeclampsia. Arch Gynecol Obstet. 1989;244(2):91–95.
  • Ahmed Y, van Iddekinge B, Paul C, et al. Retrospective analysis of platelet numbers and volumes in normal pregnancy and in pre-eclampsia. Br J Obstet Gynaecol. 1993;100(3):216–220.
  • Major HD, Campbell RA, Silver RM, et al. Synthesis of sFlt-1 by platelet-monocyte aggregates contributes to the pathogenesis of preeclampsia. Am J Obstet Gynecol. 2014;210(6):547.e1–547.e7.
  • Roberts JM, Taylor RN, Goldfien A. Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia. Am J Hypertens. 1991;4(8):700–708.
  • Clark BA, Halvorson L, Sachs B, et al. Plasma endothelin levels in preeclampsia: elevation and correlation with uric acid levels and renal impairment. Am J Obstet Gynecol. 1992;166(3):962–968.
  • Friedman SA, Schiff E, Emeis JJ, et al. Biochemical corroboration of endothelial involvement in severe preeclampsia. Am J Obstet Gynecol. 1995;172(1 Pt 1):202–203.
  • Lyall F, Greer IA. The vascular endothelium in normal pregnancy and pre-eclampsia. Rev Reprod. 1996;1(2):107–116.
  • Taylor RN, de Groot CJ, Cho YK, et al. Circulating factors as markers and mediators of endothelial cell dysfunction in preeclampsia. Semin Reprod Endocrinol. 1998;16(1):17–31.
  • Cindrova-Davies TG. Gabor Than Award Lecture 2008: pre-eclampsia – from placental oxidative stress to maternal endothelial dysfunction. Placenta. 2009;30(SupplA):S55–S65.
  • Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol. 2012;64(4):309–320.
  • Sandvik MK, Leirgul E, Nygård O, et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Am J Obstet Gynecol. 2013;209(6):569.e1–569.e10.
  • Torrado J, Farro I, Zócalo Y, et al. Preeclampsia is associated with increased central aortic pressure, elastic arteries stiffness and wave reflections, and resting and recruitable endothelial dysfunction. Int J Hypertens. 2015;2015:720683.
  • Vinayagam V, Bobby Z, Habeebullah S, et al. Plasma markers of endothelial dysfunction in patients with hypertensive disorders of pregnancy: a pilot study in a South Indian population. J MaternFetal Neonat Med. 2015:1–6.
  • Damsky CH, Fitzgerald ML, Fisher SJ. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest. 1992;89(1):210–222.
  • Labarrere CA, Faulk WP. Intercellular adhesion molecule-1 (ICAM-1) and HLA-DR antigens are expressed on endovascular cytotrophoblasts in abnormal pregnancies. Am J Reprod Immunol. 1995;33(1):47–53.
  • Gurtner GC, Davis V, Li H, et al. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev. 1995;9(1):1–14.
  • Zhou Y, Genbacev O, Fisher SJ. The human placenta remodels the uterus by using a combination of molecules that govern vasculogenesis or leukocyte extravasation. Ann NY Acad Sci. 2003;995:73–83.
  • Liu Q, Yan X, Li Y, et al. Pre-eclampsia is associated with the failure of melanoma cell adhesion molecule (MCAM/CD146) expression by intermediate trophoblast. Lab Invest. 2004;84(2):221–228.
  • Brown LM, Lacey HA, Baker PN, et al. E-cadherin in the assessment of aberrant placental cytotrophoblast turnover in pregnancies complicated by pre-eclampsia. Histochem Cell Biol. 2005;124(6):499–506.
  • Cartwright JE, Balarajah G. Trophoblast interactions with endothelial cells are increased by interleukin-1beta and tumour necrosis factor alpha and involve vascular cell adhesion molecule-1 and alpha4beta1. Exp Cell Res. 2005;304(1):328–336.
  • Lyall F. Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia. Aust N Z J Obstet Gynaecol. 2006;46(4):266–273.
  • Blechschmidt K, Mylonas I, Mayr D, et al. Expression of E-cadherin and its repressor snail in placental tissue of normal, preeclamptic and HELLP pregnancies. Virchows Arch. 2007;450(2):195–202.
  • McEwan M, Lins RJ, Munro SK, et al. Cytokine regulation during the formation of the fetal-maternal interface: focus on cell-cell adhesion and remodelling of the extra-cellular matrix. Cytokine Growth Factor Rev. 2009;20(3):241–249.
  • Zhou Y, Fisher SJ, Janatpour M, et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 1997;99(9):2139–2151.
  • Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99(9):2152–2164.
  • McMaster MT, Zhou Y, Fisher SJ. Abnormal placentation and the syndrome of preeclampsia. Semin Nephrol. 2004;24(6):540–547.
  • Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21(7):597–602.
  • Gerretsen G, Huisjes HJ, Elema JD. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol. 1981;88(9):876–881.
  • Hustin J, Foidart JM, Lambotte R. Maternal vascular lesions in pre-eclampsia and intrauterine growth retardation: light microscopy and immunofluorescence. Placenta. 1983;4:489–498.
  • Labarrere C, Alonso J, Manni J, et al. Immunohistochemical findings in acute atherosis associated with intrauterine growth retardation. Am J Reprod Immunol Microbiol AJRIM. 1985;7(4):149–155.
  • Khong TY, De Wolf F, Robertson WB, et al. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93(10):1049–1059.
  • Pijnenborg R, Anthony J, Davey DA, et al. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol. 1991;98(7):648–655.
  • Meekins JW, Pijnenborg R, Hanssens M, et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1994;101(8):669–674.
  • Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol. 2002;187(5):1416–1423.
  • Madazli R, Benian A, Ilvan S, et al. Placental apoptosis and adhesion molecules expression in the placenta and the maternal placental bed of pregnancies complicated by fetal growth restriction with and without pre-eclampsia. J Obstet Gynaecol. 2006;26(1):5–10.
  • Brosens I, Pijnenborg R, Vercruysse L, et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201.
  • Kim YM, Chaemsaithong P, Romero R, et al. The frequency of acute atherosis in normal pregnancy and preterm labor, preeclampsia, small-for-gestational age, fetal death and midtrimester spontaneous abortion. J Matern Fetal Neonatal Med. 2015;28(17):2001–2009.
  • Birdir C, Fryze J, Frölich S, et al. Impact of maternal serum levels of visfatin, AFP, PAPP-A, sFlt-1 and PlGF at 11–13 weeks gestation on small for gestational age births. J Matern Fetal Neonatal Med. 2017;30(6):629–634.
  • Missfelder-Lobos H, Teran E, Lees C, et al. Platelet changes and subsequent development of pre-eclampsia and fetal growth restriction in women with abnormal uterine artery Doppler screening. Ultrasound Obstet Gynecol. 2002;19(5):443–448.
  • Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222(3):222–235.
  • Myatt L, Kossenjans W, Sahay R, et al. Oxidative stress causes vascular dysfunction in the placenta. J MaternFetal Med. 2000;9(1):79–82.
  • Madazli R, Benian A, Aydin S, et al. The plasma and placental levels of malondialdehyde, glutathione and superoxide dismutase in pre-eclampsia. J Obstet Gynaecol. 2002;22(5):477–480.
  • Vaughan JE, Walsh SW. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens Pregnancy. 2002;21(3):205–223.
  • Burton GJ, Yung HW, Cindrova-Davies T, et al. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta. 2009;30(SupplA):S43–S48.
  • Potdar N, Singh R, Mistry V, et al. First-trimester increase in oxidative stress and risk of small-for-gestational-age fetus. BJOG. 2009;116(5):637–642.
  • Zhou X, Zhang GY, Wang J, et al. A novel bridge between oxidative stress and immunity: the interaction between hydrogen peroxide and human leukocyte antigen G in placental trophoblasts during preeclampsia. Am J Obstet Gynecol. 2012;206(5):447.e7–447.e16.
  • Friedman SA, de Groot CJ, Taylor RN, et al. Plasma cellular fibronectin as a measure of endothelial involvement in preeclampsia and intrauterine growth retardation. Am J Obstet Gynecol. 1994;170(3):838–841.
  • Gilstrap LG, 3rd, Hankins GD, Snyder RR, et al. Acute pyelonephritis in pregnancy. Compr Ther. 1986;12(12):38–42.
  • Mabie WC, Barton JR, Sibai B. Septic shock in pregnancy. Obstet Gynecol. 1997;90(4 Pt 1):553–561.
  • Foxman B, Klemstine KL, Brown PD. Acute pyelonephritis in US hospitals in 1997: hospitalization and in-hospital mortality. Ann Epidemiol. 2003;13(2):144–150.
  • Barton JR, Sibai BM. Severe sepsis and septic shock in pregnancy. Obstet Gynecol. 2012;120(3):689–706.
  • Morgan J, Roberts S. Maternal sepsis. Obstet Gynecol Clin North Am. 2013;40(1):69–87.
  • Wing DA, Fassett MJ, Getahun D. Acute pyelonephritis in pregnancy: an 18-year retrospective analysis. Am J Obstet Gynecol. 2014;210(3):219.e1–219.e6.
  • Chaiworapongsa T, Romero R, Gotsch F, et al. Acute pyelonephritis during pregnancy changes the balance of angiogenic and anti-angiogenic factors in maternal plasma. J Matern Fetal Neonatal Med. 2010;23(2):167–178.
  • Gotsch F, Romero R, Espinoza J, et al. Maternal serum concentrations of the chemokine CXCL10/IP-10 are elevated in acute pyelonephritis during pregnancy. J Matern Fetal Neonatal Med. 2007;20(10):735–744.
  • Soto E, Romero R, Vaisbuch E, et al. Fragment Bb: evidence for activation of the alternative pathway of the complement system in pregnant women with acute pyelonephritis. J Matern Fetal Neonatal Med. 2010;23(10):1085–1090.
  • Madan I, Than NG, Romero R, et al. The peripheral whole-blood transcriptome of acute pyelonephritis in human pregnancya. J Perinat Med. 2014;42(1):31–53.
  • Chaiworapongsa T, Romero R, Whitten A, et al. Differences and similarities in the transcriptional profile of peripheral whole blood in early and late-onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsiaa. J Perinat Med. 2013;41(5):485–504.
  • Yokoo A, Hirose T, Matsukawa M, et al. Expression of intercellular adhesion molecule-1 in mice with Pseudomonas-induced pyelonephritis. J Urol. 1998;160(2):592–596.
  • Rui-Mei L, Kara AU, Sinniah R. In situ analysis of adhesion molecule expression in kidneys infected with murine malaria. J Pathol. 1998;185(2):219–225.
  • Bishop GA, Hall BM. Expression of leucocyte and lymphocyte adhesion molecules in the human kidney. Kidney Int. 1989;36(6):1078–1085.
  • Lhotta K, Neumayer HP, Joannidis M, et al. Renal expression of intercellular adhesion molecule-1 in different forms of glomerulonephritis. Clin Sci (Lond). 1991;81(4):477–481.
  • Brady HR. Leukocyte adhesion molecules and kidney diseases. Kidney Int. 1994;45(5):1285–1300.
  • Cowley HC, Heney D, Gearing AJ, et al. Increased circulating adhesion molecule concentrations in patients with the systemic inflammatory response syndrome: a prospective cohort study. Crit Care Med. 1994;22(4):651–657.
  • Endo S, Inada K, Kasai T, et al. Levels of soluble adhesion molecules and cytokines in patients with septic multiple organ failure. J Inflamm. 1995–1996;46(4):212–219.
  • Sessler CN, Windsor AC, Schwartz M, et al. Circulating ICAM-1 is increased in septic shock. Am J Respir Crit Care Med. 1995;151(5):1420–1427.
  • Boldt J, Muller M, Kuhn D, et al. Circulating adhesion molecules in the critically ill: a comparison between trauma and sepsis patients. Intensive Care Med. 1996;22(2):122–128.
  • Austgulen R, Arntzen KJ, Haereid PE, et al. Infections in neonates delivered at term are associated with increased serum levels of ICAM-1 and E-selectin. Acta paediatr. 1997;86(3):274–280.
  • Kayal S, Jaïs JP, Aguini N, et al. Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med. 1998;157(3 Pt 1):776–784.
  • Baines PB, Marzouk O, Thomson AP, et al. Endothelial cell adhesion molecules in meningococcal disease. Arch Dis Child. 1999;80(1):74–76.
  • Weigand MA, Schmidt H, Pourmahmoud M, et al. Circulating intercellular adhesion molecule-1 as an early predictor of hepatic failure in patients with septic shock. Crit Care Med. 1999;27(12):2656–2661.
  • Whalen MJ, Doughty LA, Carlos TM, et al. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure. Crit Care Med. 2000;28(7):2600–2607.
  • Gbadegesin RA, Cotton SA, Coupes BM, et al. Plasma and urinary soluble adhesion molecule expression is increased during first documented acute pyelonephritis. Arch Dis Child. 2002;86(3):218–221.
  • Figueras-Aloy J, Gómez-López L, Rodríguez-Miguélez JM, et al. Serum soluble ICAM-1, VCAM-1, L-selectin, and p-selectin levels as markers of infection and their relation to clinical severity in neonatal sepsis. Am J Perinatol. 2007;24(6):331–338.
  • Shapiro NI, Schuetz P, Yano K, et al. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010;14(5):R182.
  • Schuetz P, Jones AE, Aird WC, et al. Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis-related hypotension. Shock. 2011;36(2):104–108.
  • Loukovaara M, Ylikorkala O. Serum nitric oxide metabolites and E-selectin in preterm premature rupture of membranes. Acta obstet gynecol Scand. 2003;82(7):616–619.
  • Zou L, Zhang H, Zhu J, et al. The value of the soluable intercellular adhesion molecule-1 levels in matermal serum for determination of occult chorioamnionitis in premature rupture of membranes. J Huazhong Univ Sci Technol Med Sci. 2004;24(2):154–157.
  • Laudanski P, Raba G, Kuc P, et al. Assessment of the selected biochemical markers in predicting preterm labour. J Matern Fetal Neonatal Med. 2012;25(12):2696–2699.
  • Bartha JL, Fernández-Deudero A, Bugatto F, et al. Inflammation and cardiovascular risk in women with preterm labor. J Womens Health (Larchmt). 2012;21(6):643–648.
  • Chen X, Scholl TO. Maternal biomarkers of endothelial dysfunction and preterm delivery. PLoS One. 2014;9(1):e85716.
  • Saleh AA, Gerbasi FR, Mammen EF, et al. Increased platelet activation in preterm labor. Thromb Res. 1992;65(3):475–477.
  • Erez O, Romero R, Hoppensteadt D, et al. Premature labor: a state of platelet activation? J Perinat Med. 2008;36(5):377–387.
  • Smith GD, Whitley E, Gissler M, et al. Birth dimensions of offspring, premature birth, and the mortality of mothers. Lancet. 2000;356(9247):2066–2067.
  • Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357(9273):2002–2006.
  • Pell JP, Smith GC, Walsh D. Pregnancy complications and subsequent maternal cerebrovascular events: a retrospective cohort study of 119,668 births. Am J Epidemiol. 2004;159(4):336–342.
  • Catov JM, Newman AB, Roberts JM, et al. Preterm delivery and later maternal cardiovascular disease risk. Epidemiology. 2007;18(6):733–739.
  • Bonamy AK, Parikh NI, Cnattingius S, et al. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124(25):2839–2846.
  • Hastie CE, Smith GC, Mackay DF, et al. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: retrospective cohort study of 750 350 singleton pregnancies. Int J Epidemiol. 2011;40(4):914–919.
  • Erez O, Gotsch F, Mazaki-Tovi S, et al. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med. 2009;22(8):672–687.
  • Ay C, Kaider A, Koder S, et al. Association of elevated soluble p-selectin levels with fetal loss in women with a history of venous thromboembolism. Thromb Res. 2012;129(6):725–728.
  • Wagner DD. New links between inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2005;25(7):1321–1324.
  • Ghasemzadeh M, Hosseini E. Platelet-leukocyte crosstalk: linking proinflammatory responses to procoagulant state. Thromb Res. 2013;131(3):191–197.
  • Ward PA. The dark side of C5a in sepsis. Nat Rev Immunol. 2004;4(2):133–142.
  • Fernandez HN, Hugli TE. Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin. Polypeptide sequence determination and assignment of the oligosaccharide attachment site in C5a. J Biol Chem. 1978;253(19):6955–6964.
  • Richani K, Romero R, Soto E, et al. Unexplained intrauterine fetal death is accompanied by activation of complement. J Perinat Med. 2005;33(4):296–305.
  • Jagels MA, Daffern PJ, Hugli TE. C3a and C5a enhance granulocyte adhesion to endothelial and epithelial cell monolayers: epithelial and endothelial priming is required for C3a-induced eosinophil adhesion. Immunopharmacology. 2000;46(3):209–222.
  • Foreman KE, Vaporciyan AA, Bonish BK, et al. C5a-induced expression of p-selectin in endothelial cells. J Clin Invest. 1994;94(3):1147–1155.
  • Ferrer-Lopez P, Renesto P, Schattner M, et al. Activation of human platelets by C5a-stimulated neutrophils: a role for cathepsin G. Am J Physiol. 1990;258(6 Pt 1):C1100–C1107.
  • Del Conde I, Crúz MA, Zhang H, et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med. 2005;201(6):871–879.
  • Peerschke EI, Yin W, Grigg SE, et al. Blood platelets activate the classical pathway of human complement. J Thromb Haemost. 2006;4(9):2035–2042.
  • Manthey HD, Woodruff TM, Taylor SM, et al. Complement component 5a (C5a). Int J Biochem Cell Biol. 2009;41(11):2114–2117.
  • Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–2175.
  • Caughey AB, Stotland NE, Washington AE, et al. Maternal ethnicity, paternal ethnicity, and parental ethnic discordance: predictors of preeclampsia. Obstet Gynecol. 2005;106(1):156–161.
  • Martin JA, Hamilton BE, Osterman MJK. Births in the United States, 2016. NCHS Data Brief. 2017;287(287):1–8.
  • Miller MA, Sagnella GA, Kerry SM, et al. Ethnic differences in circulating soluble adhesion molecules: the Wandsworth Heart and Stroke Study. Clin Sci (Lond). 2003;104(6):591–598.
  • Akolekar R, Veduta A, Minekawa R, et al. Maternal plasma p-selectin at 11 to 13 weeks of gestation in hypertensive disorders of pregnancy. Hypertens Pregnancy. 2011;30(3):311–321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.