277
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Presence of Chlamydia trachomatis DNA in the amniotic fluid in women with preterm prelabor rupture of membranes

, , , , , , , , , , , & show all
Pages 1586-1597 | Received 26 Mar 2019, Accepted 03 Jul 2019, Published online: 15 Jul 2019

References

  • Waters TP, Mercer B. Preterm PROM. Clin Obstet Gynecol. 2011;54(2):307–312.
  • Mercer BM. Preterm premature rupture of the membranes. Obstet Gynecol. 2003;101(1):178–193.
  • Johanzon M, Ödesjö H, Jacobsson B, et al. Extreme preterm birth. Obstet Gynecol. 2008;111(1):42–50.
  • Romero R, Yoon BH, Mazor M, et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and Gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 1993;169(4):839–851.
  • Romero R, Ghidini A, Mazor M, et al. Microbial invasion of the amniotic cavity in premature rupture of membranes. Clin Obstet Gynecol. 1991;34(4):769–778.
  • Romero R, Scharf K, Mazor M, et al. The clinical value of gas–liquid chromatography in the detection of intra-amniotic microbial invasion. Obstet Gynecol. 1988;72(1):44–50.
  • Yoon BH, Romero R, Park JS, et al. Microbial invasion of the amniotic cavity with Ureaplasma urealyticum is associated with a robust host response in fetal, amniotic, and maternal compartments. Am J Obstet Gynecol. 1998;179(5):1254–1260.
  • Yoon BH, Romero R, Kim M, et al. Clinical implications of detection of Ureaplasma urealyticum in the amniotic cavity with the polymerase chain reaction. Am J Obstet Gynecol. 2000;183(5):1130–1137.
  • Witt A, Berger A, Gruber CJ, et al. Increased intrauterine frequency of Ureaplasma urealyticum in women with preterm labor and preterm premature rupture of the membranes and subsequent cesarean delivery. Am J Obstet Gynecol. 2005;193(5):1663–1669.
  • Gomez R, Romero R, Nien JK, et al. Antibiotic administration to patients with preterm premature rupture of membranes does not eradicate intra-amniotic infection. J Matern Fetal Neonatal Med. 2007;20(2):167–173.
  • Lee SE, Romero R, Jung H, et al. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007;197(3):294.e1–294.e6.
  • DiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64(1):38–57.
  • Cobo T, Kacerovsky M, Palacio M, et al. Intra-amniotic inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. PLoS One. 2012;7(8):e43677.
  • Musilova I, Kutová R, Pliskova L, et al. Intraamniotic inflammation in women with preterm prelabor rupture of membranes. PLOS One. 2015;10(7):e0133929.
  • Gomez-Lopez N, Romero R, Xu Y, et al. Neutrophil extracellular traps in the amniotic cavity of women with intra-amniotic infection: a new mechanism of host defense. Reprod Sci. 2017;24(8):1139–1153.
  • Gomez-Lopez N, Romero R, Garcia-Flores V, et al. Amniotic fluid neutrophils can phagocytize bacteria: a mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017;78(4):e12723.
  • Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(12):1394–1409.
  • DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonat Med. 2012;17(1):2–11.
  • Jacobsson B, Aaltonen R, Rantakokko-Jalava K, et al. Quantification of Ureaplasma urealyticum DNA in the amniotic fluid from patients in PTL and pPROM and its relation to inflammatory cytokine levels. Acta Obstet Gynecol Scand. 2009;88(1):63–70.
  • Kacerovsky M, Celec P, Vlkova B, et al. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PLoS One. 2013;8(3):e60399.
  • Kacerovsky M, Pliskova L, Bolehovska R, et al. The impact of the microbial load of genital mycoplasmas and gestational age on the intensity of intraamniotic inflammation. Am J Obstet Gynecol. 2012;206(4):342.e1–342.e8.
  • Vile Y, Carroll SG, Watts P, et al. Chlamydia trachomatis infection in prelabour amniorrhexis. Br J Obstet Gynaecol. 1997;104(9):1091–1093.
  • Musilova I, Pliskova L, Gerychova R, et al. Maternal white blood cell count cannot identify the presence of microbial invasion of the amniotic cavity or intra-amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One. 2017;12(12):e0189394.
  • Agrawal T, Vats V, Salhan S, et al. The mucosal immune response to Chlamydia trachomatis infection of the reproductive tract in women. J Reprod Immunol. 2009;83(1–2):173–178.
  • Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10(12):e0143304.
  • Banhart S, Rose L, Aeberhard L, et al. Chlamydia trachomatis and its interaction with the cellular retromer. Int J Med Microbiol. 2018;308(1):197–205.
  • Andrews WW, Goldenberg RL, Mercer B, et al. The preterm prediction study: association of second-trimester genitourinary Chlamydia infection with subsequent spontaneous preterm birth. Am J Obstet Gynecol. 2000;183(3):662–668.
  • Ahmadi A, Ramazanzadeh R, Sayehmiri K, et al. Association of Chlamydia trachomatis infections with preterm delivery: a systematic review and meta-analysis. BMC Preg Childbirth. 2018;18(1):240.
  • Alger LS, Lovchik JC, Hebel JR, et al. The association of Chlamydia trachomatis, Neisseria gonorrhoeae, and group B Streptococci with preterm rupture of the membranes and pregnancy outcome. Am J Obstet Gynecol. 1988;159(2):397–404.
  • Gravett MG, Nelson HP, DeRouen T, et al. Independent associations of bacterial vaginosis and Chlamydia trachomatis infection with adverse pregnancy outcome. JAMA. 1986;256(14):1899–1903.
  • Martius J, Krohn MA, Hillier SL, et al. Relationships of vaginal Lactobacillus species, cervical Chlamydia trachomatis, and bacterial vaginosis to preterm birth. Obstet Gynecol. 1988;71(1):89–95.
  • Mattern CF, Brockman MP, Donohue P. Association of Chlamydia trachomatis and Mycoplasma hominis with intrauterine growth retardation and preterm delivery. The John Hopkins study of cervicitis and adverse pregnancy outcome. Am J Epidemiol. 1989;129(6):1247–1257.
  • Sterzik K, Rosenbusch B, Danner B, et al. Nachweis von Chlamydia trachomatis in der klinischen Routine: höhere Sensitivität der Zellkultur gegenüber dem Mikroimmunfluoreszenztest. Geburtshilfe Frauenheilkd. 1988;48(12):881–883.
  • Benes S, McCormack WM. Comparison of methods for cultivation and isolation of Chlamydia trachomatis. J Clin Microbiol. 1982;16(5):847–850.
  • Lee S-J, Won H-S, Kim M-N, et al. Diagnostic value of the matrix metalloproteinase-8 rapid test for detecting microbial invasion of the amniotic cavity. Eur J Clin Microbiol Infect Dis. 2008;27(12):1257–1260.
  • Chaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016;29(3):349–359.
  • Chaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016;29(3):360–367.
  • Gomez R, Romero R, Ghezzi F, et al. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179(1):194–202.
  • Salafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989;73:383–389.
  • Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529–534.
  • Thomas G, Jones J, Sbarra A, et al. Isolation of Chlamydia trachomatis from amniotic fluid. Int J Gynecol Obstet. 1991;35(2):199–199.
  • Shemer Y, Sarov I. Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect Immun. 1985;48(2):592–596.
  • Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986;53(2):347–351.
  • Aiyar A, Quayle AJ, Buckner LR, et al. Influence of the tryptophan-indole-IFNgamma axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections. Front Cell Infect Microbiol. 2014;4:72.
  • Harris SR, Clarke IN, Seth-Smith HMB, et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet. 2012;44(4):413–419.
  • Ziklo N, Huston WM, Hocking JS, et al. Chlamydia trachomatis genital tract infections: when host immune response and the microbiome collide. Trends Microbiol. 2016;24(9):750–765.
  • Witkin SS, Minis E, Athanasiou A, et al. Chlamydia trachomatis: the persistent pathogen. Clin Vaccine Immunol. 2017;24(10).
  • Yamazaki T, Matsumoto M, Matsuo J, et al. Frequency of Chlamydia trachomatis in Ureaplasma-positive healthy women attending their first prenatal visit in a community hospital in Sapporo, Japan. BMC Infect Dis. 2012;12(0 ):82.
  • Yamazaki T, Matsuo J, Nakamura S, et al. Effect of Ureaplasma parvum co-incubation on Chlamydia trachomatis maturation in human epithelial HeLa cells treated with interferon-gamma. J Infect Chemother. 2014;20(8):460–464.
  • Gencay M, Puolakkainen M, Wahlstrom T, et al. Chlamydia trachomatis detected in human placenta. J Clin Pathol. 1997;50(10):852–855.
  • Dong Z-W, Li Y, Zhang L-Y, et al. Detection of Chlamydia trachomatis intrauterine infection using polymerase chain reaction on chorionic villi. Int J Gynecol Obstet. 1998;61(1):29–32.
  • Rours GI, de Krijger RR, Ott A, et al. Chlamydia trachomatis and placental inflammation in early preterm delivery. Eur J Epidemiol. 2011;26(5):421–428.
  • de la Torre E, Mulla MJ, Yu AG, et al. Chlamydia trachomatis infection modulates trophoblast cytokine/chemokine production. J Immunol. 2009;182(6):3735–3745.
  • Azenabor AA, Kennedy P, Balistreri S. Chlamydia trachomatis infection of human trophoblast alters estrogen and progesterone biosynthesis: an insight into role of infection in pregnancy sequelae. Int J Med Sci. 2007;4(4):223–231.
  • Stepan M, Cobo T, Musilova I, et al. Maternal serum C-reactive protein in women with preterm prelabor rupture of membranes. PLOS One. 2016;11(3):e0150217.
  • Kacerovsky M, Cobo T, Andrys C, et al. The fetal inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2013;26(8):795–801.
  • Webster SJ, Brode S, Ellis L, et al. Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. PLOS Pathog. 2017;13(6):e1006383.
  • Kavathas PB, Boeras CM, Mulla MJ, et al. Nod1, but not the ASC inflammasome, contributes to induction of IL-1beta secretion in human trophoblasts after sensing of Chlamydia trachomatis. Mucosal Immunol. 2013;6(2):235–243.
  • Romero R, Xu Y, Plazyo O, et al. A role for the inflammasome in spontaneous labor at term. Am J Reprod Immunol. 2018;79(6):e12440.
  • Plazyo O, Romero R, Unkel R, et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol Reprod. 2016;95(6):130.
  • Gomez-Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous labor at term with acute histologic chorioamnionitis. Reprod Sci. 2017;24(6):934–953.
  • Gomez-Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017;24(10):1382–1401.
  • Gomez-Lopez N, Romero R, Xu Y, et al. Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term. Am J Reprod Immunol. 2017;77(5):e12648.
  • Faro J, Romero R, Schwenkel G, et al. Inflammation-induced intra-amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome. Biol Reprod. 2018;100(5):1290–1305.
  • Gomez-Lopez N, Romero R, Garcia-Flores V, et al. Inhibition of the NLRP3 inflammasome can prevent sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes. Biol Reprod. 2019;100(5):1306–1318.
  • Frenette P, Dodds L, Armson BA, et al. Preterm prelabour rupture of membranes: effect of latency on neonatal and maternal outcomes. J Obstet Gynaecol Can. 2013;35(8):710–717.
  • Nayot D, Penava D, Da Silva O, et al. Neonatal outcomes are associated with latency after preterm premature rupture of membranes. J Perinatol. 2012;32(12):970–977.
  • Rodríguez-Trujillo A, Cobo T, Vives I, et al. Gestational age is more important for short-term neonatal outcome than microbial invasion of the amniotic cavity or intra-amniotic inflammation in preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2016;95(8):926–933.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.