4,045
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Cell-free DNA analysis in maternal blood: comparing genome-wide versus targeted approach as a first-line screening test

, , , , , , , , , , & show all
Pages 3552-3561 | Received 18 Oct 2019, Accepted 25 Oct 2019, Published online: 13 Nov 2019

References

  • Gil MM, Accurti V, Santacruz B, et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2017;50(3):302–314.
  • Gil MM, Galeva S, Jani J, et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(6):734–742.
  • Grossman TB, Bodenlos KL, Chasen ST. Abnormal nuchal translucency: residual risk with normal cell-free DNA screening. J Matern Fetal Neonatal Med. 2019;1–6. DOI:https://doi.org/10.1080/14767058.2019.1568405.
  • White K, Wang Y, Kunz LH, et al. Factors associated with obtaining results on repeat cell-free DNA testing in samples redrawn due to insufficient fetal fraction. J Matern Fetal Neonatal Med. 2019;1–6. DOI:https://doi.org/10.1080/14767058.2019.1594190.
  • Kostenko E, Chantraine F, Vandeweyer K, et al. Clinical and economic impact of adopting noninvasive prenatal testing as a primary screening method for fetal aneuploidies in the general pregnancy population. Fetal Diagn Ther. 2019;45(6):413–423.
  • Gammon BL, Jaramillo C, Riggan KA, et al. Decisional regret in women receiving high risk or inconclusive prenatal cell-free DNA screening results. J Matern Fetal Neonatal Med. 2018;1–7. DOI:https://doi.org/10.1080/14767058.2018.1519541.
  • Rego de Sousa MJ, Albuquerque M, Ribeiro R, et al. Evaluation of Noninvasive prenatal Testing (NIPT) guidelines using the AGREE II instrument. J Matern Fetal Neonatal Med. 2018;1–9. DOI:https://doi.org/10.1080/14767058.2018.1494716.
  • Chen KM, White K, Shabbeer J, et al. Maternal age trends support uptake of non-invasive prenatal testing (NIPT) in the low-risk population. J Matern Fetal Neonatal Med. 2019;32(23):4039–4042.
  • Gil MM, Brik M, Casanova C, et al. Screening for trisomies 21 and 18 in a Spanish public hospital: from the combined test to the cell-free DNA test. J Matern Fetal Neonatal Med. 2017;30(20):2476–2482.
  • Norwitz ER, Levy B. Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol. 2013;6(2):48–62.
  • Hartwig TS, Ambye L, Sørensen S, et al. Discordant non-invasive prenatal testing (NIPT) – a systematic review. Prenat Diagn. 2017;37(6):527–539.
  • Curnow KJ, Wilkins-Haug L, Ryan A, et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am J Obstet Gynecol. 2015;212(1):79.e1–79.e9.
  • Bianchi DW. Should we “open the kimono” to release the results of rare autosomal aneuploidies following noninvasive prenatal whole genome sequencing? Prenat Diagn. 2017;37(2):123–125.
  • Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9(405). DOI:https://doi.org/10.1126/scitranslmed.aan1240.
  • Poon LL, Leung TN, Lau TK, et al. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin Chem. 2002;48(1):35–41.
  • Defrag SR. (DEtection of fetal FRaction and Gender) [WWW document]. [cited 30 Sept 2016]. Available from: https://github.com/rstraver/wisecondor/blob/master/defrag.py
  • Kim SK, Hannum G, Geis J, et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat Diagn. 2015;35(8):810–815.
  • Straver R, Oudejans CB, Sistermans EA, et al. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat Diagn. 2016;36(7):614–621.
  • Dahl F, Ericsson O, Karlberg O, et al. Imaging single DNA molecules for high precision NIPT. Sci Rep. 2018;8(1):4549.
  • Bevilacqua E, Jani JC, Letourneau A, et al. Cell-free DNA analysis in maternal blood: differences in estimates between Laboratories with Different Methodologies Using a propensity score approach. Fetal Diagn Ther. 2019;45(5):302–311.
  • Sparks AB, Wang ET, Struble CA, et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn. 2012;32(1):3–9.
  • Sparks AB, Struble CA, Wang ET, et al. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol. 2012;206(4):319.e1–319.e9.
  • Brison N, Van Den Bogaert K, Dehaspe L, et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. Genet Med. 2017;19(3):306–313.
  • Bayindir B, Dehaspe L, Brison N, et al. Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management. Eur J Hum Genet. 2015;23(10):1286–1293.
  • Imai K, Ratkovic M. Robust estimation of inverse probability weights for marginal structural models. J Am Stat Assoc. 2015;110(511):1013–1023.
  • Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424.
  • Funk MJ, Westreich D, Wiesen C, et al. Doubly robust estimation of causal effects. Am J Epidemiol. 2011;173(7):761–767.
  • Galeva S, Gil MM, Konstantinidou L, et al. First-trimester screening for trisomies by cfDNA testing of maternal blood in singleton and twin pregnancies: factors affecting test failure. Ultrasound Obstet Gynecol. 2019;53(6):804–809.
  • Malan V, Bussières L, Winer N, et al. Effect of cell-free DNA screening vs direct invasive diagnosis on miscarriage rates in women with pregnancies at high risk of trisomy 21: a randomized clinical trial. JAMA. 2018;320(6):557–565.
  • Revello R, Sarno L, Ispas A, et al. Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound Obstet Gynecol. 2016;47(6):698–704.
  • Benn P, Grati FR. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances. Ultrasound Obstet Gynecol. 2018;51(4):429–433.
  • Benn P, Malvestiti F, Grimi B, et al. Rare autosomal trisomies: comparison of detection through cell-free DNA analysis and direct chromosome preparation of chorionic villus samples. Ultrasound Obstet Gynecol. 2019;54(4):458–467.
  • Grati FR, Ferreira J, Benn P, et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet Med. 2019. DOI:https://doi.org/10.1038/s41436-019-0630-y.
  • Abousleiman C, Lismonde A, Jani JC. Concerns following rapid implementation of first-line screening for aneuploidy by cell-free DNA analysis in the Belgian healthcare system. Ultrasound Obstet Gynecol. 2019;53(6):847–848.
  • Di Renzo GC, Luis Bartha J, Bilardo CM. More research is needed prior to the implementation of genome-wide cell-free DNA testing in specific populations (Response to letter L19-020A: confined placental trisomy detection through cell-free DNA in the maternal circulation: benefit for pregnancy management). Am J Obstet Gynecol. 2019;221(3):287.
  • Di Renzo GC, Bartha JL, Bilardo CM. Expanding the indications for cell-free DNA in the maternal circulation: clinical considerations and implications. Am J Obstet Gynecol. 2019;220(6):537–542.