87
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The entropy of RR intervals is associated to gestational age in full-term newborns with adequate weight for gestational age

, , , , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 3639-3644 | Received 20 Aug 2019, Accepted 31 Oct 2019, Published online: 13 Nov 2019

References

  • Nunes I, Ayres-de-Campos D, Kwee A, et al. Prolonged saltatory fetal heart rate pattern leading to newborn metabolic acidosis. Clin Exp Obstet Gynecol. 2014;41(5):507–511.
  • Graves BW, Haley MM. Newborn transition. J Midwif Womens Health. 2013;58(6):662–670.
  • Hillman NH, Kallapur SG, Jobe AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. 2012;39(4):769–783.
  • Jain A, Mohamed A, Kavanagh B, et al. Cardiopulmonary adaptation during first day of life in human neonates. J Pediatr. 2018;200:50–57.e2.
  • Regalado MG, Schechtman VL, Khoo MCK, et al. Spectral analysis of heart rate variability and respiration during sleep in cocaine-exposed neonates. Clin Physiol. 2001;21(4):428–436.
  • Morton SU, Brodsky D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016;43(3):395–407.
  • Swanson JR, Sinkin RA. Transition from fetus to newborn. Pediatr Clin North Am. 2015;62(2):329–343.
  • Fyfe KL, Yiallourou SR, Wong FY, et al. The effect of gestational age at birth on post-term maturation of heart rate variability. Sleep. 2015;38(10):1635–1644.
  • Hayakawa S, Ohno N, Okada S, et al. Significant augmentation of regulatory T cell numbers occurs during the early neonatal period. Clin Exp Immunol. 2017;190(2):268–279.
  • Mulkey SB, Plessis AD. The critical role of the central autonomic nervous system in fetal-neonatal transition. Semin Pediatr Neurol. 2018;28:29–37.
  • Michel A, Lowe NK. The successful immediate neonatal transition to extrauterine life. Biol Res Nurs. 2017;19(3):287–294.
  • Mizock BA. The multiple organ dysfunction syndrome. Surg Infect. . 2009;55(8):476–526.
  • Dimitrijević L, Bjelaković B, Čolović H, et al. Assessment of general movements and heart rate variability in prediction of neurodevelopmental outcome in preterm infants. Early Hum Dev. 2016;99:7–12.
  • Patural H, Pichot V, Jaziri F, et al. Autonomic cardiac control of very preterm newborns: a prolonged dysfunction. Early Hum Dev. 2008;84(10):681–687.
  • Figueiredo R, Pereira R, Neto OP. Nonlinear analysis is the most suitable method to detect changes in heart autonomic control after exercise of different durations. Comput Biol Med. 2018;97:83–88.
  • Júnior EPN, Ribeiro ÍJS, Freire IV, et al. The smoking habit negatively influences autonomic heart control in community-dwelling elderly adults. Hellenic J Cardiol. 2017;58(4):283–288.
  • da Silva DM, Macedo MC, Lemos LB, et al. Reliability analysis of the heart autonomic control parameters during hemodialysis sessions. Biomed Tech (Berl). 2016;61(6):623–630.
  • Holzinger A, Jurisica I. Knowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutions. Lect Notes Comput Sci. 2014;8401:1–18.
  • Pivatelli FC, Dos Santos MA, Fernandes GB, et al. Sensitivity, specificity and predictive values of linear and nonlinear indices of heart rate variability in stable angina patients. Int Arch Med. 2012;5(1):31.
  • Malik M, Bigger JT, Camm AJ, et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. European Heart Journal. 1996;17(3):354–381.
  • Voss A, Schroeder R, Truebner S, et al. Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and Poincaré plot analysis in risk stratification in patients with dilated cardiomyopathy. Chaos. 2007;17(1):015120.
  • Griffin MP, Lake DE, O'Shea TM, et al. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res. 2007;61(2):222–227.
  • Verklan MT, Bickel DR, Moon J. Heart rate variability of preterm neonates quantified by energy entropy. Nurs Heal Sci. 1999;1(2):103–111.
  • Cao H, Lake DE, Griffin MP, et al. Increased nonstationarity of neonatal heart rate before the clinical diagnosis of sepsis. Ann Biomed Eng. 2004;32(2):233–244.
  • Moorman JR, Carlo WA, Kattwinkel J, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159(6):900–906.e1.
  • Villar J, Cheikh Ismail LC, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn Cross-Sectional Study of the INTERGROWTH-21 st Project. Lancet. 2014;384(9946):857–868.
  • Capurro H, Konichezky S, Fonseca D, et al. A simplified method for diagnosis of gestational age in the newborn infant. J Pediatr. 1978;93(1):120–122.
  • Nunes MFP, Pinheiro SMC, Medrado F, et al. Estimating gestational age and its relation to the anthropometric status of newborns: a study comparing the Capurro and ultrasound methods with last menstrual period. Rev Bras Saude Mater Infant. 2011;11(1):51–60.
  • Vanderlei LCM, Silva RA, Pastre CM, et al. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res. 2008;41(10):854–859.
  • Selig FA, Tonolli ER, Silva EV, et al. Heart rate variability in preterm and term neonates. Arq Bras Cardiol. 2011;96(6):443–449.
  • Silva MGF, Gregório ML, De Godoy MF. Does heart rate variability improve prediction of failed extubation in preterm infants?. J Perinat Med. 2019;47(2):252–257.
  • Jurca R, Church TS, Morss GM, et al. Eight weeks of moderate-intensity exercise training increases heart rate variability in sedentary postmenopausal women. Am Heart J. 2004;147(5):e21.
  • Vanderlei LC, Pastre CM, Hoshi RA, et al. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24(2):205–217.
  • Tarvainen MP, Niskanen JP, Lipponen JA, et al. Kubios HRV–heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210–220.
  • Czippelova B, Chladekova L, Uhrikova Z, et al. Time irreversibility of heart rate oscillations in newborns – does it reflect system nonlinearity?. Biomed Signal Process Control. 2015;19:85–88.
  • Maestri R, Pinna GD, Porta A, et al. Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable?. Physiol Meas. 2007;28(9):1067–1077.
  • Hoyer D, Żebrowski J, Cysarz D, et al. Monitoring fetal maturation-objectives, techniques and indices of autonomic function. Physiol Meas. 2017;38(5):R61–R88.
  • Javorka K, Javorka M, Tonhajzerova I, et al. Determinants of heart rate in newborns. Acta Med Martiniana. 2011;11(2):7–16.
  • Longin E, Gerstner T, Schaible T, et al. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med. 2006;34(4):303–308.
  • Patural H, Barthelemy JC, Pichot V, et al. Birth prematurity determines prolonged autonomic nervous system immaturity. Clin Auton Res. 2004;14(6):391–395.
  • Javorka K, Lehotska Z, Kozar M, et al. Heart rate variability in newborns. Physiol Res. 2017;66(Supplementum 2):S203–S214.
  • Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–2172.
  • Sassi R, Cerutti S, Lombardi F, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17(9):1341–1353.
  • Clairambault J, Curzi-Dascalova L, Kauffmann F, et al. Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum Dev. 1992;28(2):169–183.
  • Naraghi L, Mejaddam AY, Birkhan OA, et al. Sample entropy predicts lifesaving interventions in trauma patients with normal vital signs. J Crit Care. 2015;30(4):705–710.
  • Peev MP, Naraghi L, Chang Y, et al. Real-time sample entropy predicts life-saving interventions after the Boston Marathon bombing. J Crit Care. 2013;28(6):1109.e1–1109.e4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.