711
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Metabolomic identification of placental alterations in fetal growth restriction

, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 447-456 | Received 01 May 2019, Accepted 24 Jan 2020, Published online: 10 Feb 2020

References

  • American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol. 2013;121(5):1122–1133.
  • Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav. 2006;88(3):234–243.
  • Kanaka-Gantenbein C. Fetal origins of adult diabetes. Ann N Y Acad Sci. 2010;1205(1):99–105.
  • Barker DJ, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013;34(10):841–845.
  • de Onis M, Blössner M, Villar J. Levels and patterns of intrauterine growth retardation in developing countries. Eur J Clin Nutr. 1998;52(1):S5–S15.
  • Unterscheider J, Daly S, Geary MP, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208(4):290.e1–290.e6.
  • Berkley E, Chauhan SP, Abuhamad A, et al. Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol. 2012;206(4):300–308.
  • German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005;1(1):3–9.
  • Favretto D, Cosmi E, Ragazzi E, et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem. 2012;402(3):1109–1121.
  • Ivorra C, García-Vicent C, Chaves FJ, et al. Metabolomic profiling in blood from umbilical cords of low birth weight newborns. J Transl Med. 2012;10(1):142.
  • Sanz-Cortés M, Carbajo RJ, Crispi F, et al. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation. Plos One. 2013;8(12):e80121.
  • Walsh BH, Broadhurst DI, Mandal R, et al. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS One. 2012;7(12):e50520.
  • Horgan R, Brown M, Dunn W, et al. The difference in the metabolic footprint of placental villous explants cultured in different oxygen tensions. BJOG Int J Obstet Gynaecol. 2009;116(10):1409–1410.
  • Graham SF, Chevallier OP, Kumar P, et al. Metabolomic profiling of brain from infants who died from sudden infant death syndrome reveals novel predictive biomarkers. J Perinatol. 2017;37(1):91–97.
  • Graham SF, Kumar PK, Bjorndahl T, et al. Metabolic signatures of Huntington’s disease (HD): 1H NMR analysis of the polar metabolome in post-mortem human brain. Biochim Biophys Acta. 2016;1862(9):1675–1684.
  • Ravanbakhsh S, Liu P, Bjordahl TC, et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 2015;10(5):e0124219.
  • Bahado-Singh RO, Ertl R, Mandal R, et al. Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014;211(3):240.e1–240.e14.
  • Bahado-Singh RO, Graham SF, Han B, et al. Serum metabolomic markers for traumatic brain injury: a mouse model. Metabolomics. 2016;12(6):100.
  • Xia J, Mandal R, Sinelnikov IV, et al. MetaboAnalyst 2.0 – a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(W1):W127–W133.
  • Xia J, Psychogios N, Young N, et al. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–W660.
  • Karnovsky A, Weymouth T, Hull T, et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics. 2012;28(3):373–380.
  • Song F, Wu W, Qian Z, et al. Assessment of the placenta in intrauterine growth restriction by diffusion-weighted imaging and proton magnetic resonance spectroscopy. Reprod Sci. 2017;24(4):575–581.
  • Hellmuth C, Uhl O, Standl M, et al. Cord blood metabolome is highly associated with birth weight, but less predictive for later weight development. Obes Facts. 2017;10(2):85–100.
  • Raff H, Bruder ED, Jankowski BM, et al. Neonatal hypoxic hyperlipidemia in the rat: effects on aldosterone and corticosterone synthesis in vitro. Am J Physiol Regul Integr Comp Physiol. 2000;278(3):R663–R668.
  • Sibley CP, Turner MA, Cetin I, et al. Placental phenotypes of intrauterine growth. Pediatr Res. 2005;58(5):827–832.
  • Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350.
  • Murthi P, Wallace EM, Walker DW. Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta. 2017;52:62–70.
  • Johnston MV. Neurotransmitters and vulnerability ofthe developing brain. Brain Dev. 1995;17(5):301–306.
  • Simões RV, Muñoz-Moreno E, Carbajo RJ, et al. In vivo detection of perinatal brain metabolite changes in a rabbit model of intrauterine growth restriction (IUGR). PLoS One. 2015;10(7):e0131310.
  • Kalhan SC, Marczewski SE. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev Endocr Metab Disord. 2012;13(2):109–119.
  • Shambaugh GE. Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. Am J Clin Nutr. 1977;30(12):2083–2087.
  • Lin G, Wang X, Wu G, et al. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids. 2014;46(7):1605–1623.
  • Wu G, Bazer FW, Johnson GA, et al. Functional amino acids in the development of the pig placenta. Mol Reprod Dev. 2017;84(9):870–882.
  • Battaglia FC. Glutamine and glutamate exchange between the fetal liver and the placenta. J Nutr. 2000;130(4):974S–977S.
  • Wu X, Xie C, Zhang Y, et al. Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids. 2015;47(1):45–53.
  • Vaughn PR, Lobo C, Battaglia FC, et al. Glutamine-glutamate exchange between placenta and fetal liver. Am J Physiol. 1995;268(4):E705–E711.
  • Jozwik M, Pietrzycki B, Jozwik M, et al. Expression of enzymes regulating placental ammonia homeostasis in human fetal growth restricted pregnancies. Placenta. 2009;30(7):607–612.
  • Sigurdsson V, Takei H, Soboleva S, et al. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell. 2016;18(4):522–532.
  • Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000;95(7):2284–2288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.