259
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia

&
Pages 3234-3245 | Received 02 Dec 2019, Accepted 24 Aug 2020, Published online: 13 Sep 2020

References

  • Silva DM, Nardiello C, Pozarska A, et al. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2015;309(11):L1239–L1272.
  • Bourbon J, Boucherat O, Chailley-Heu B, et al. Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res. 2005;57(5 Pt 2):38R–46R.
  • Kramer B, Lievense S, Been J, et al. From classic to new bronchopulmonary dysplasia. Ned Tijdschr Geneeskd. 2010;154:A1024.
  • Jobe AH. Mechanisms of lung injury and bronchopulmonary dysplasia. Am J Perinatol. 2016;33(11):1076–1078.
  • Yu K-H, Li J, Snyder M, et al. The genetic predisposition to bronchopulmonary dysplasia. Curr Opin Pediatr. 2016;28(3):318–323.
  • Lal CV, Ambalavanan N. Genetic predisposition to bronchopulmonary dysplasia. Semin Perinatol. 2015;39(8):584–591.
  • Lavoie PM, Dubé M-P. Genetics of bronchopulmonary dysplasia in the age of genomics. Curr Opin Pediatr. 2010;22(2):134–138.
  • Alice H, Xavier D, Emmanuelle B, et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2011;184(10):1164.
  • Joanna F, Douglas L, Derek G, et al. IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants. Pediatr Res. 2012;71(1):107–114.
  • Reuter S, O'Donovan D, Hegemier S, et al. Urinary F 2-isoprostanes are poor prognostic indicators for the development of bronchopulmonary dysplasia. J Perinatol. 2007;27(5):303–306.
  • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: mining tens of millions of expression profiles-database and tools update. Nucleic Acids Res. 2007;35(Database issue):D760–D765.
  • Gautier L, Cope L, Bolstad BM, et al. Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–315.
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
  • Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287.
  • Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–D368.
  • Paraskevopoulou MD, Vlachos IS, Karagkouni D, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 2016;44(D1):D231–D238.
  • Park MS, Rieger-Fackeldey E, Schanbacher BL, et al. Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen. Pediatr Res. 2007;62(6):652–657.
  • Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360(6393):eaan8546.
  • Hivert B, Liu Z, Chuang C-Y, et al. Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci. 2002;21(4):534–545.
  • Branchfield K, Nantie L, Verheyden JM, et al. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science. 2016;351(6274):707–710.
  • Anselmo MA, Dalvin S, Prodhan P, et al. Slit and robo: expression patterns in lung development. Gene Expr Patterns. 2003;3(1):13–19.
  • Greenberg JM, Thompson FY, Brooks SK, et al. Slit and robo expression in the developing mouse lung. Dev Dyn. 2004;230(2):350–360.
  • Song M-K, Lee H-S, Ryu J-C. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015;334:111–121.
  • Wang Z, Li W, Guo Q, et al. Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. Biomed Res Int. 2018;2018:6057589.
  • Yin R, Yuan L, Ping L, et al. Neonatal bronchopulmonary dysplasia increases neuronal apoptosis in the hippocampus through the HIF-1α and p53 pathways. Respir Physiol Neurobiol. 2016;220:81–87.
  • Bhattacharya S, Zhou Z, Yee M, et al. The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator. Am J Physiol Lung Cell Mol Physiol. 2014;307(7):L516–L523.
  • Leng X, Ma J, Liu Y, et al. Mechanism of piR-DQ590027/MIR17HG regulating the permeability of glioma conditioned normal BBB. J Exp Clin Cancer Res. 2018;37(1):246.
  • Dong J, Carey WA, Abel S, et al. MicroRNA–mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics. 2012;13:204.
  • Chen L, Su L, Li J, et al. Hypermethylated FAM5C and MYLK in serum as diagnosis and pre-warning markers for gastric cancer. Dis Markers. 2012;32(3):195–202.
  • Giousoh A, Vaz R, Bryson-Richardson RJ, et al. Bone morphogenetic protein/retinoic acid inducible neural-specific protein (Brinp) expression during Danio rerio development. Gene Expr Patterns. 2015;18(1–2):37–43.
  • Kuroiwa T, Yamamoto N, Onda T, et al. Expression of the FAM5C in tongue squamous cell carcinoma. Oncol Rep. 2009;22(5):1005–1011.
  • Sato J, Kinugasa M, Satomi-Kobayashi S, et al. Family with sequence similarity 5, member C (FAM5C) increases leukocyte adhesion molecules in vascular endothelial cells: implication in vascular inflammation. PLOS One. 2014;9(9):e107236.
  • Lin J, Iremonger J, Pickworth J, et al. P245 whole blood levels of microrna-34a predict survival and regulate genes associated with pulmonary arterial hypertension. Thorax. 2016;71(Suppl. 3):A220.2–A221.
  • Ambalavanan N, Mourani P. Pulmonary hypertension in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):240–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.