388
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Maternal-fetal genetic interactions, imprinting, and risk of placental abruption

ORCID Icon, , , , , , , , & show all
Pages 3473-3482 | Received 01 Jan 2020, Accepted 08 Sep 2020, Published online: 24 Sep 2020

References

  • Crimi M, Rigolio R. The mitochondrial genome, a growing interest inside an organelle. Int J Nanomedicine. 2008;3(1):51–57.
  • Ananth CV, Lavery JA, Vintzileos AM, et al. Severe placental abruption: clinical definition and associations with maternal complications. Am J Obstet Gynecol. 2016;214(2):272. e1-272–e9.
  • Oyelese Y, Ananth CV. Placental abruption. Obstet Gynecol. 2006;108(4):1005–1016.
  • Denis M, Enquobahrie DA, Tadesse MG, et al. Placental genome and maternal-placental genetic interactions: a genome-wide and candidate gene association study of placental abruption. PLoS One. 2014;9(12):e116346.
  • Workalemahu T, Enquobahrie DA, Gelaye B, et al. Genetic variations and risk of placental abruption: a genome-wide association study and meta-analysis of genome-wide association studies. Placenta. 2018;66:8–16.
  • Workalemahu T, Enquobahrie DA, Gelaye B, et al. Abruptio placentae risk and genetic variations in mitochondrial biogenesis and oxidative phosphorylation: replication of a candidate gene association study. Am J Obstet Gynecol. 2018;219(6):617.e1–e1-617. e17.
  • Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–450.
  • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–753.
  • Hochner H, Allard C, Granot-Hershkovitz E, et al. Parent-of-origin effects of the APOB gene on adiposity in young adults. PLoS Genet. 2015;11(10):e1005573.
  • Younis JS, Samueloff A. Gestational vascular complications. Best Pract Res Clin Haematol. 2003;16(2):135–151.
  • Bartolomei MS, Tilghman SM. Genomic imprinting in mammals. Annu Rev Genet. 1997;31(1):493–525.
  • Oudejans CB, Mulders J, Lachmeijer AM, et al. The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod. 2004;10(8):589–598.
  • Odendaal Dh J. Debbie Grové H. Risk factors for and perinatal mortality of abruptio placentae in patients hospitalised for early onset severe pre-eclampsia-a case controlled study. J Obstet Gynaecol. 2000;20(4):358–364.
  • Liang M, Wang X, Li J, et al. Association of combined maternal-fetal TNF. BioMed Res Int. 2010;2010:1–7.
  • Elsasser DA, Ananth CV, Prasad V, et al. Diagnosis of placental abruption: relationship between clinical and histopathological findings. Eur J Obstet Gynecol Reprod Biol. 2010;148(2):125–130.
  • Delaneau O, Coulonges C, Zagury J-F. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics. 2008;9(1):540.
  • Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529.
  • Doridot L, Châtre L, Ducat A, et al. Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene. Antioxid Redox Signal. 2014;21(6):819–834.
  • Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29(30):4362–4368.
  • Workalemahu T, Enquobahrie DA, Moore A, et al. Genome-wide and candidate gene association studies of placental abruption. Int J Mol Epidemiol Genet. 2013;4(3):128–139.
  • Borengasser SJ, Faske J, Kang P, et al. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring. Physiol Genomics. 2014;46(23):841–850.
  • McCarthy C, Kenny LC. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia. Sci Rep. 2016;6:32683.
  • Poidatz D, Dos Santos E, Duval F, et al. Involvement of estrogen-related receptor-γ and mitochondrial content in intrauterine growth restriction and preeclampsia. Fertil Steril. 2015;104(2):483–490.
  • Mouzat K, Mercier E, Polge A, et al. A common polymorphism in NR1H2 (LXRbeta) is associated with preeclampsia. BMC Med Genet. 2011;12(1):145.
  • Johnson AD, Handsaker RE, Pulit SL, et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–2939.
  • Jirtle RL. Geneimprint. 2012. Available online at: http://www.geneimprint org.
  • Howey R, Mamasoula C, Töpf A, et al. Increased power for detection of parent-of-origin effects via the use of haplotype estimation. Am J Hum Genet. 2015;97(3):419–434.
  • Ainsworth HF, Unwin J, Jamison DL, et al. Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet Epidemiol. 2011;35(1):19–45.
  • Howey R, Cordell HJ. PREMIM and EMIM: tools for estimation of maternal, imprinting and interaction effects using multinomial modelling. BMC Bioinformatics. 2012;13(1):149.
  • Krämer A, Green J, Pollard J, Jr, et al. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–530.
  • Lupo PJ, Mitchell LE, Canfield MA, et al. Maternal–fetal metabolic gene–gene interactions and risk of neural tube defects. Mol Genet Metab. 2014;111(1):46–51.
  • Goddard KA, Tromp G, Romero R, et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered. 2007;63(1):1–16.
  • Fournier T, Pavan L, Tarrade A, et al. The role of PPAR-gamma/RXR-alpha heterodimers in the regulation of human trophoblast invasion. Ann N Y Acad Sci. 2002;973(1):26–30.
  • Tarrade A, Schoonjans K, Pavan L, et al. PPARgamma/RXRalpha heterodimers control human trophoblast invasion. J Clin Endocrinol Metab. 2001;86(10):5017–5024.
  • Muralimanoharan S, Maloyan A, Myatt L. Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus: role of miR-143. Clin Sci. 2016;130(11):931–941.
  • Lee C-H, Wu S-B, Hong C-H, et al. Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers. Am J Pathol. 2011;178(5):2066–2076.
  • Yun S-H, Han S-H, Park J-I. Peroxisome proliferator-activated receptor γ and PGC-1α in cancer: dual actions as tumor promoter and suppressor. PPAR Res. 2018;2018:6727421.
  • Jiang LQ, Garcia-Roves PM, de Castro Barbosa T, et al. Constitutively active calcineurin in skeletal muscle increases endurance performance and mitochondrial respiratory capacity. Am J Physiol Endocrinol Metab. 2010;298(1):E8–E16.
  • Eilers W, Jaspers RT, de Haan A, et al. CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle. BMC Physiol. 2014;14(1):7.
  • Chin ER. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc. 2004;63(2):279–286.
  • Pico AR, Kelder T, Van Iersel MP, et al. WikiPathways: pathway editing for the people. PLoS Biol. 2008;6(7):e184.
  • Viero C, Shibuya I, Kitamura N, et al. Oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Therap. 2010;16(5):e138–e156.
  • Hasegawa J, Nakamura M, Hamada S, et al. Capable of identifying risk factors for placental abruption. J Matern Fetal Neonatal Med. 2014;27(1):52–56.
  • Chen K-C, Juo S-HH. MicroRNAs in atherosclerosis. Kaohsiung J Med Sci. 2012;28(12):631–640.
  • Connolly S, Anney R, Gallagher L, et al. A genome-wide investigation into parent-of-origin effects in autism spectrum disorder identifies previously associated genes including SHANK3. Eur J Hum Genet. 2017;25(2):234–239.
  • Chaste P, Klei L, Sanders SJ, et al. A genome-wide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry. 2015;77(9):775–784.
  • Sinsheimer JS, Palmer CG, Woodward JA. Detecting genotype combinations that increase risk for disease: maternal-fetal genotype incompatibility test. Genet Epidemiol. 2003;24(1):1–13.
  • Frost JM, Moore GE. The importance of imprinting in the human placenta. PLoS Genet. 2010;6(7):e1001015.
  • Koppes EA. The role of genomic imprints in placental biology. Pittsburgh: University of Pittsburgh; 2016.
  • Sun Q, Song K, Shen X, et al. The association between KCNQ1 gene polymorphism and type 2 diabetes risk: a meta-analysis. PloS One. 2012;7(11):e48578.
  • Guillemot F, Nagy A, Auerbach A, et al. Essential role of Mash-2 in extraembryonic development. Nature. 1994;371(6495):333–336.
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
  • Rachmilewitz J, Gileadi O, Eldar‐Geva T, et al. Transcription of the H19 gene in differentiating cytotrophoblasts from human placenta. Mol Reprod Dev. 1992;32(3):196–202.
  • Williams PJ, Pipkin FB. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):405–417.
  • Yu L, Chen M, Zhao D, et al. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta. 2009;30(5):443–447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.