1,947
Views
0
CrossRef citations to date
0
Altmetric
Original Article

A biomarker for bacteremia in pregnant women with acute pyelonephritis: soluble suppressor of tumorigenicity 2 or sST2

, , , , , , , , , , & show all
Article: 2183470 | Received 11 Jun 2022, Accepted 15 Feb 2023, Published online: 30 Mar 2023

References

  • Cunningham FG, Morris GB, Mickal A. Acute pyelonephritis of pregnancy: a clinical review. Obstet Gynecol. 1973;42(1):112–117.
  • Gilstrap LC, Cunningham FG, Whalley PJ. Acute pyelonephritis in pregnancy: an anterospective study. Obstet Gynecol. 1981;57(4):409–413.
  • Sheffield JS, Cunningham FG. Urinary tract infection in women. Obstet Gynecol. 2005;106(5 Pt 1):1085–1092.
  • Wing DA, Fassett MJ, Getahun D. Acute pyelonephritis in pregnancy: an 18-year retrospective analysis. Am J Obstet Gynecol. 2014;210:219.e1–219.e6.
  • Cunningham FG, Lucas MJ, Hankins GD. Pulmonary injury complicating antepartum pyelonephritis. Am J Obstet Gynecol. 1987;156(4):797–807.
  • Zeeman GG, Wendel GD Jr, Cunningham FG. A blueprint for obstetric critical care. Am J Obstet Gynecol. 2003;188:532–536.
  • Graham JM, Oshiro BT, Blanco JD, et al. Uterine contractions after antibiotic therapy for pyelonephritis in pregnancy. Am J Obstet Gynecol. 1993;168(2):577–580.
  • Millar LK, Debuque L, Wing DA. Uterine contraction frequency during treatment of pyelonephritis in pregnancy and subsequent risk of preterm birth. J Perinat Med. 2003;31:41–46.
  • Cole DE, Taylor TL, Mccullough DM, et al. Acute respiratory distress syndrome in pregnancy. Crit Care M. 2005;33:S269–S278.
  • Mabie WC, Barton JR, Sibai B. Septic shock in pregnancy. Obstet Gynecol. 1997;90(4 Pt 1):553–561.
  • Sheffield JS. Sepsis and septic shock in pregnancy. Crit Care Clin. 2004;20:651–660; viii.
  • Galvagno SM Jr, Camann W. Sepsis and acute renal failure in pregnancy. Anesth Analg. 2009;108:572–575.
  • Barton JR, Sibai BM. Severe sepsis and septic shock in pregnancy. Obstetr Gynecol. 2012;120:689–706.
  • Snyder CC, Barton JR, Habli M, et al. Severe sepsis and septic shock in pregnancy: indications for delivery and maternal and perinatal outcomes. J Matern-Fetal Neonatal Med. 2013;26:503–506.
  • Romero R, Oyarzun E, Mazor M, et al. Meta-analysis of the relationship between asymptomatic bacteriuria and preterm delivery/low birth weight. Obstetr Gynecol. 1989;73:576–582.
  • Hill JB, Sheffield JS, Mcintire DD Jr, et al. Acute pyelonephritis in pregnancy. Obstetr Gynecol. 2005;105:18–23.
  • Jolley JA, Kim S, Wing DA. Acute pyelonephritis and associated complications during pregnancy in 2006 in US hospitals. J Matern-Fetal Neonatal Med. 2012;25:2494–2498.
  • Farkash E, Weintraub AY, Sergienko R, et al. Acute antepartum pyelonephritis in pregnancy: a critical analysis of risk factors and outcomes. Eur J Obstetr Gynecol Reprod Biol. 2012;162:24–27.
  • Angus DC, Van Der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–851.
  • Singer M, Deutschman CS, Seymour CW. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–810.
  • Hotchkiss RS, Moldawer LL, Opal SM, et al. Sepsis and septic shock. Nat Rev Dis Prim. 2016;2:16045.
  • Hensley MK, Bauer ME, Admon LK, et al. Incidence of maternal sepsis and sepsis-related maternal deaths in the United States. JAMA. 2019;322:890–892.
  • Shields A, De Assis V, Halscott T. Top 10 pearls for the recognition, evaluation, and management of maternal sepsis. Obstetr Gynecol. 2021;138:289–304.
  • Cantwell R, Clutton-Brock T, Cooper G, et al. Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG. 2011;1(118)Suppl :1–203.
  • Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–1596.
  • Bauer ME, Lorenz RP, Bauer ST, et al. Maternal deaths due to sepsis in the state of Michigan, 1999–2006. Obstetr and Gynecol. 2015;126:747–752.
  • Lawton B, Macdonald EJ, Brown SA, et al. Preventability of severe acute maternal morbidity. Am J Obstet Gynecol. 2014;210:557–556.e1.
  • Sappenfield E, Jamieson DJ, Kourtis AP. Pregnancy and susceptibility to infectious diseases. Infect Dis Obstetr Gynecol. 2013;2013:752852.
  • Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J M. 2014;370:2211–2218.
  • Luppi P, Haluszczak C, Trucco M, et al. Normal pregnancy is associated with peripheral leukocyte activation. Am J Reprod Immunol. 2002;47:72–81.
  • Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63:425–433.
  • Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17:469–482.
  • Xu H, Turnquist HR, Hoffman R, et al. Role of the IL-33-ST2 axis in sepsis. Milit Med Res. 2017;4:3.
  • Liew FY, Pitman NI, Mcinnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–110.
  • Milovanovic M, Volarevic V, Radosavljevic G, et al. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res. 2012;52:89–99.
  • Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trend Immunol. 2012;33:389–396.
  • Oboki K, Nakae S, Matsumoto K, et al. IL-33 and airway inflammation. Allerg Asthma Immunol Res. 2011;3:81–88.
  • Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–490.
  • Smithgall MD, Comeau MR, Yoon BR, et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008;20:1019–1030.
  • Chan WL, Pejnovic N, Lee CA, et al. Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. J Immunol. 2001;167:1238–1244.
  • Lécart S, Lecointe N, Subramaniam A, et al. Activated, but not resting human Th2 cells, in contrast to Th1 and T regulatory cells, produce soluble ST2 and express low levels of ST2L at the cell surface. Eur J Immunol. 2002;32:2979–2987.
  • Hayakawa H, Hayakawa M, Kume A, et al. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem. 2007;282:26369–26380.
  • Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109:2186–2190.
  • Alves-Filho JC, Sônego F, Souto FO, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16:708–712.
  • Seki K, Sanada S, Kudinova AY, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2:684–691.
  • Oshikawa K, Kuroiwa K, Tago K, et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am J Respir Crit Care Med. 2001;164(2):277–281.
  • Kuroiwa K, Arai T, Okazaki H, et al. Identification of human ST2 protein in the sera of patients with autoimmune diseases. Biochem Biophys Res Commun. 2001;284(5):1104–1108.
  • Tajima S, Oshikawa K, Tominaga S, et al. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest. 2003;124:1206–1214.
  • Weinberg EO, Shimpo M, Hurwitz S, et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–726.
  • Mathews LR, Lott JM, Isse K, et al. Elevated ST2 distinguishes incidences of pediatric heart and small bowel transplant rejection. Am J Transplant. 2016;16:938–950.
  • Hoogerwerf JJ, Tanck MW, Van Zoelen MA, et al. Soluble ST2 plasma concentrations predict mortality in severe sepsis. Intensive Care Med. 2010;36:630–637.
  • Kim H, Hur M, Moon HW, et al. S. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann Intensive Care. 2017;7:27.
  • Hur M, Kim H, Kim HJ, et al. Soluble ST2 has a prognostic role in patients with suspected sepsis. Ann Lab Med. 2015;35:570–577.
  • Calò Carducci FI, Aufiero LR, Folgori L, et al. Serum soluble ST2 as diagnostic marker of systemic inflammatory reactive syndrome of bacterial etiology in children. Pediatr Infect Dis J. 2014;33:199–203.
  • Brunner M, Krenn C, Roth G, et al. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med. 2004;30:1468–1473.
  • Challis JR, Lockwood CJ, Myatt L, et al. Inflammation and pregnancy. Reprod Sci. 2009;16:206–215.
  • Saito S, Miyazaki S, Sasaki Y. Th1/Th2 balance of the implantation site in humans. Georgetown (TX): Springer; 2006.
  • Chaouat G, Tranchot Diallo J, Volumenie JL, et al. Immune suppression and Th1/Th2 balance in pregnancy revisited: a (very) personal tribute to Tom Wegmann. Am J Reprod Immunol. 1997;37:427–434.
  • Ng SC, Gilman-Sachs A, Thaker P, et al. Expression of intracellular Th1 and Th2 cytokines in women with recurrent spontaneous abortion, implantation failures after IVF/ET or normal pregnancy. Am J Reprod Immunol. 2002;48(2):77–86.
  • Mor G, Cardenas I, Abrahams V, et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann NY Acad Sci. 2011;1221:80–87.
  • Romero R, Espinoza J, Gonçalves LF, et al. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11:317–326.
  • Lindström TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction. 2005;130:569–581.
  • Edey LF, O'dea KP, Herbert BR, et al. The local and systemic immune response to intrauterine LPS in the prepartum mouse. Biol Reprod. 2016;95:125.
  • Stampalija T, Chaiworapongsa T, Romero R, et al. Soluble ST2, a modulator of the inflammatory response, in preterm and term labor. J Matern Fetal Neonatal Med. 2014;27:111–121.
  • Granne I, Southcombe JH, Snider JV, et al. ST2 and IL-33 in pregnancy and pre-eclampsia. PloS One. 2011;6:e24463.
  • Sasmaya PH, Khalid AF, Anggraeni D, et al. Differences in maternal soluble ST2 levels in the third trimester of normal pregnancy versus preeclampsia. Eur J Obstetr Gynecol Reprod Biol. 2022;13:100140.
  • Kaitu’u-Lino TJ, Tuohey L, Tong S. Maternal serum interleukin-33 and soluble ST2 across early pregnancy, and their association with miscarriage. J Reprod Immunol. 2012;95(1-2):46–49.
  • Salker MS, Nautiyal J, Steel JH, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PloS One. 2012;7:e52252.
  • Stampalija T, Chaiworapongsa T, Romero R, et al. Maternal plasma concentrations of sST2 and angiogenic/anti-angiogenic factors in preeclampsia. J Matern-Fetal Neonatal Med. 2013;26:1359–1370.
  • Romero R, Chaemsaithong P, Tarca AL, et al. Maternal plasma-soluble ST2 concentrations are elevated prior to the development of early and late onset preeclampsia - a longitudinal study. J Matern-Fetal Neonatal Med. 2018;31:418–432.
  • Kong W, Gong Y, Zhou R, et al. Soluble ST2, a preeclampsia-related cytokine receptor, is transported bi-directionally across the placenta. Placenta. 2018;63:21–25.
  • Mugerli S, Ambrožič J, Geršak K, et al. Elevated soluble-St2 concentrations in preeclampsia correlate with echocardiographic parameters of diastolic dysfunction and return to normal values one year after delivery. J Matern-Fetal Neonatal Med. 2021;34:379–385.
  • Stampalija T, Romero R, Korzeniewski SJ, et al. Soluble ST2 in the fetal inflammatory response syndrome: in vivo evidence of activation of the anti-inflammatory limb of the immune response. J Matern-Fetal Neonatal Med. 2013;26:1384–1393.
  • Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281:154–168.
  • Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–1549.
  • Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin’? PloS One. 2008;3:e3331.
  • Miller AM, Xu D, Asquith DL, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008;205(2):339–346.
  • Baekkevold ES, Roussigné M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003;163:69–79.
  • Pichery M, Mirey E, Mercier P, et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012;188:3488–3495.
  • Lüthi AU, Cullen SP, Mcneela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98.
  • Lefrançais E, Roga S, Gautier V, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A. 2012;109(5):1673–1678.
  • Jackson DJ, Makrinioti H, Rana BM, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190:1373–1382.
  • Gadani SP, Walsh JT, Smirnov I, et al. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron. 2015;85:703–709.
  • Kearley J, Silver JS, Sanden C, et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity. 2015;42:566–579.
  • Coyle AJ, Lloyd C, Tian J, et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J Exp Med. 1999;190:895–902.
  • Townsend MJ, Fallon PG, Matthews DJ, et al. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J Exp Med. 2000;191(6):1069–1076.
  • Meisel C, Bonhagen K, Löhning M, et al. Regulation and function of T1/ST2 expression on CD4+ T cells: induction of type 2 cytokine production by T1/ST2 cross-linking. J Immunol. 2001;166(5):3143–3150.
  • Palmer G, Gabay C. Interleukin-33 biology with potential insights into human diseases. Nat Rev Rheumatol. 2011;7:321–329.
  • Kurowska-Stolarska M, Hueber A, Stolarski B, et al. Interleukin-33: a novel mediator with a role in distinct disease pathologies. J Intern Med. 2011;269(1):29–35.
  • Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014;31:31–37.
  • Pei C, Barbour M, Fairlie-Clarke KJ, et al. Emerging role of interleukin-33 in autoimmune diseases. Immunology. 2014;141:9–17.
  • Peine M, Marek RM, Löhning M. IL-33 in T cell differentiation, function, and immune homeostasis. Trends Immunol. 2016;37:321–333.
  • Löhning M, Stroehmann A, Coyle AJ, et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci U S A. 1998;95(12):6930–6935.
  • Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7:827–840.
  • Mildner M, Storka A, Lichtenauer M, et al. Primary sources and immunological prerequisites for sST2 secretion in humans. Cardiovasc Res. 2010;87(4):769–777.
  • Teufelberger AR, Nordengrün M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D. J Allerg Clin Immunol. 2018;141:549–559.e7.
  • Tominaga S, Inazawa J, Tsuji S. Assignment of the human ST2 gene to chromosome 2 at q11.2. Hum Genet. 1996;97:561–563.
  • Dale M, Nicklin MJ. Interleukin-1 receptor cluster: gene organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q. Genomics. 1999;57(1):177–179.
  • Bergers G, Reikerstorfer A, Braselmann S, et al. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. Embo J. 1994;13(5):1176–1188.
  • Iwahana H, Yanagisawa K, Ito-Kosaka A, et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur J Biochem. 1999;264(2):397–406.
  • Bartunek J, Delrue L, Van Durme F, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52(25):2166–2174.
  • Saccani S, Polentarutti N, Penton-Rol G, et al. Divergent effects of LPS on expression of IL-1 receptor family members in mononuclear phagocytes in vitro and in vivo. Cytokine. 1998;10:773–780.
  • Yang HS, Hur M, Kim H, et al. Soluble suppression of tumorigenicity 2 and echocardiography in sepsis. Ann Lab Med. 2016;36:590–594.
  • Oshikawa K, Yanagisawa K, Tominaga S, et al. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. Clin Exp Allerg. 2002;32:1520–1526.
  • Oshikawa K, Yanagisawa K, Tominaga S, et al. ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation. Biochem Biophys Res Commun. 2002;299(1):18–24.
  • Kearley J, Buckland KF, Mathie SA, et al. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med. 2009;179:772–781.
  • Lebtahi R, Moreau S, Marchand-Adam S, et al. Increased uptake of 111In-octreotide in idiopathic pulmonary fibrosis. J Nucl Med. 2006;47:1281–1287.
  • Chen S, Chen B, Wen Z, et al. IL-33/ST2-mediated inflammation in macrophages is directly abrogated by IL-10 during rheumatoid arthritis. Oncotarget. 2017;8:32407–32418.
  • Wang Y, Chen Z, Huang Y, et al. Prognostic significance of serum interleukins and soluble ST2 in Traditional Chinese Medicine (TCM) syndrome-differentiated rheumatoid arthritis. Med Sci Monit. 2018;24:3472–3478.
  • Dong Y, Zhong J, Dong L. IL-33 in rheumatic diseases. Front Med. 2021;8:739489.
  • Margiotta DP, Navarini L, Vadacca M, et al. The IL33/ST2 axis in sjogren syndrome in relation to disease activity. Eur Rev Med Pharmacol Sci. 2016;20:1295–1299.
  • Conti P, Stellin L, Caraffa A, et al. Advances in mast cell activation by IL-1 and IL-33 in Sjögren’s syndrome: promising inhibitory effect of IL-37. Int J Mol Sci. 2020;21:4297.
  • Soyfoo MS, Nicaise C. Pathophysiologic role of interleukin-33/ST2 in Sjögren’s syndrome. Autoimmun Rev. 2021;20:102756.
  • Sabatine MS, Morrow DA, Higgins LJ, et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008;117:1936–1944.
  • Tonacci A, Quattrocchi P, Gangemi S. IL33/ST2 axis in diabetic kidney disease: a literature review. Medicina (Kaunas). 2019;55:50.
  • Omland T, Prebensen C, Jonassen C, et al. Soluble ST2 concentrations associate with in-hospital mortality and need for mechanical ventilation in unselected patients with COVID-19. Open Heart. 2021;8:e001884.
  • Ragusa R, Basta G, Turco Del S, et al. A possible role for ST2 as prognostic biomarker for COVID-19. Vasc Pharmacol. 2021;138:106857.
  • Luppi P, Irwin TE, Simhan H, et al. CD11b expression on circulating leukocytes increases in preparation for parturition. Am J Reprod Immunol. 2004;52:323. 9.
  • Cierny JT, Unal ER, Flood P, et al. Maternal inflammatory markers and term labor performance. Am J Obstet Gynecol. 2014;210:447.e1–447.e6.
  • Madan I, Than NG, Romero R, et al. The peripheral whole-blood transcriptome of acute pyelonephritis in human pregnancya. J Perinatal Med. 2014;42:31–53.
  • Soto E, Romero R, Vaisbuch E, et al. Fragment Bb: evidence for activation of the alternative pathway of the complement system in pregnant women with acute pyelonephritis. J Matern-Fetal Neonatal Med. 2010;23:1085–1090.
  • Kusanovic JP, Romero R, Esoinoza J, et al. Maternal serum soluble CD30 is increased in pregnancies complicated with acute pyelonephritis. J Mater-Fetal Neonatal Med. 2007;20:803–811.
  • Gotsch F, Romero R, Espinoza J, et al. Maternal serum concentrations of the chemokine CXCL10/IP-10 are elevated in acute pyelonephritis during pregnancy. J Matern-Fetal Neonatal Med. 2007;20:735–744.
  • Chaemsaithong P, Romero R, Korzeniewski SJ, et al. Soluble TRAIL in normal pregnancy and acute pyelonephritis: a potential explanation for the susceptibility of pregnant women to microbial products and infection. J Matern-Fetal Neonatal Med. 2013;26:1568–1575.
  • Chaiworapongsa T, Romero R, Gotsch F, et al. Acute pyelonephritis during pregnancy changes the balance of angiogenic and anti-angiogenic factors in maternal plasma. J Matern-Fetal Neonatal Med. 2010;23:167–178.
  • Nien JK, Romero R, Hoppensteadt D, et al. Pyelonephritis during pregnancy: a cause for an acquired deficiency of protein Z. J Matern-Fetal Neonatal Med. 2008;21:629–637.
  • Mazaki-Tovi S, Vaisbuch E, Romero R, et al. Maternal plasma concentration of the pro-inflammatory adipokine pre-B-cell-enhancing factor (PBEF)/visfatin is elevated in pregnant patients with acute pyelonephritis. Am J Reprod Immunol. 2010;63:252–262.
  • Mazaki-Tovi S, Romero R, Vaisbuch E, et al. Low circulating maternal adiponectin in patients with pyelonephritis: adiponectin at the crossroads of pregnancy and infection. J Perinatal Med. 2010;38:9–17.
  • Mazaki-Tovi S, Vaisbuch E, Romero R, et al. Hyperresistinemia - a novel feature in systemic infection during human pregnancy. Am J Reprod Immunol. 2010;63:358–369.
  • Albright CM, Ali TN, Lopes V, et al. The sepsis in obstetrics score: a model to identify risk of morbidity from sepsis in pregnancy. Am J Obstet Gynecol. 2014;211:39–38. e1
  • Edwards SE, Grobman WA, Lappen JR, et al. Modified obstetric early warning scoring systems (MOEWS): validating the diagnostic performance for severe sepsis in women with chorioamnionitis. Am J Obstet Gynecol. 2015;212:536–538. e1
  • Bowyer L, Robinson HL, Barrett H, et al. SOMANZ guidelines for the investigation and management sepsis in pregnancy. Austral NZ J Obstetr Gynaecol. 2017;57:540–551.
  • Vouloumanou EK, Plessa E, Karageorgopoulos DE, et al. Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intens Care Med. 2011;37:747–762.
  • Wacker C, Prkno A, Brunkhorst FM, et al. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–435.
  • Tan M, Lu Y, Jiang H, et al. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: a systematic review and meta-analysis. J Cell Biochem. 2019;120:5852–5859.
  • Fjell CD, Thair S, Hsu JL, et al. Cytokines and signaling molecules predict clinical outcomes in sepsis. PloS One. 2013;8:e79207.
  • Macmillan MC, Grimes DA. The limited usefulness of urine and blood cultures in treating pyelonephritis in pregnancy. Obstet Gynecol. 1991;78(5 Pt 1):745–748.
  • Mcmurray BR, Wrenn KD, Wright SW. Usefulness of blood cultures in pyelonephritis. Am J Emerg Med. 1997;15:137–140.
  • Thanassi M. Utility of urine and blood cultures in pyelonephritis. Acad Emerg Med. 1997;4:797–800.
  • Wing DA, Park AS, Debuque L, et al. Limited clinical utility of blood and urine cultures in the treatment of acute pyelonephritis during pregnancy. Am J Obstet Gynecol. 2000;182:1437–1440.
  • Velasco M, Martínez JA, Moreno-Martínez A, et al. Blood cultures for women with uncomplicated acute pyelonephritis: are they necessary? Clin Infect Dis. 2003;37(8):1127–1130.
  • Chen Y, Nitzan O, Saliba W, et al. Are blood cultures necessary in the management of women with complicated pyelonephritis? J Infect. 2006;53(4):235–240.
  • Gomi H, Goto Y, Laopaiboon M, et al. Routine blood cultures in the management of pyelonephritis in pregnancy for improving outcomes. Cochr Database Syst Rev. 2015;2015: cd009216.
  • Mueller T, Dieplinger B. The Presage(®) ST2 assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Exp Rev Mol Diagn. 2013;13:13–30.
  • Gao S, Li J. Development of a novel homogeneous nanoparticle-based assay for rapid and high-throughput quantitation of the sST2 protein in human serum. Int J Nanomed. 2020;15:10539–10546.
  • Johnson JR, Russo TA. Acute pyelonephritis in adults. New Engl J Med. 2018;378:48–59.
  • Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011. 52:e103–e120.
  • Eliakim-Raz N, Yahav D, Paul M, et al. Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection– 7 days or less versus longer treatment: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2013;68(10):2183–2191.
  • Kang CI, Kim J, Park DW, et al. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect Chemother. 2018;50:67–100.
  • Yahav D, Franceschini E, Koppel F, et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clin Infect Dis. 2019;69(7):1091–1098.
  • Daneman N, Fowler RA. Shortening antibiotic treatment durations for bacteremia. Clin Infect Dis. 2019;69(7):1099–1100.
  • Grette K, Cassity S, Holliday N, et al. Acute pyelonephritis during pregnancy: a systematic review of the aetiology, timing, and reported adverse perinatal risks during pregnancy. J Obstetr Gynaecol. 2020;40:739–748.
  • Daneman N, Rishu AH, Pinto RL, et al. Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness (BALANCE) randomised clinical trial: study protocol. BMJ Open. 2020;10:e038300.
  • Meier MA, Branche A, Neeser OL, et al. Procalcitonin-guided antibiotic treatment in patients with positive blood cultures: a patient-level meta-analysis of randomized trials. Clin Infect Dis. 2019;69:388–396.