1,165
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Association of maternal methionine synthase reductase gene polymorphisms with the risk of congenital heart disease in offspring: a hospital-based case-control study

, , , , , , , , , , , & show all
Article: 2211201 | Received 28 Apr 2022, Accepted 02 May 2023, Published online: 14 May 2023

References

  • Triedman JK, Newburger JW. Trends in congenital heart disease: the next decade. Circulation. 2016;133(25):2716–2733.
  • Liu Y, Chen S, Zuhlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455–463.
  • Zhao QM, Liu F, Wu L, et al. Prevalence of congenital heart disease at live birth in China. J Pediatr. 2019;204:53–58.
  • Gilboa SM, Salemi JL, Nembhard WN, et al. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation. 2010;122(22):2254–2263.
  • Rossano JW. Congenital heart disease: a global public health concern. Lancet Child Adolesc Health. 2020;4(3):168–169.
  • Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge a scientific statement from the American heart association council on cardiovascular disease in the young. Circulation. 2007;115(23):2995–3014.
  • Coppede F. The genetics of folate metabolism and maternal risk of birth of a child with down syndrome and associated congenital heart defects. Front Genet. 2015;6:223.
  • Zhao JY, Yang XY, Shi KH, et al. A functional variant in the cystathionine beta-synthase gene promoter significantly reduces congenital heart disease susceptibility in a han chinese population. Cell Res. 2013;23(2):242–253.
  • Nazki FH, Sameer AS, Ganaie BA. Folate: metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533(1):11–20.
  • Gaughan DJ, Kluijtmans LAJ, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451–456.
  • Elmore CL, Wu X, Leclerc D, et al. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase. Mol Genet Metab. 2007;91(1):85–97.
  • Mascarenhas R, Gouda H, Ruetz M, et al. Human B12-dependent enzymes: methionine synthase and Methylmalonyl-CoA mutase. Methods Enzymol. 2022;668:309–326.
  • Yu D, Yang L, Shen S, et al. Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies. Pediatr Cardiol. 2014;35(7):1091–1098.
  • Pishva SR, Vasudevan R, Etemad A, et al. Analysis of MTHFR and MTRR gene polymorphisms in iranian ventricular septal defect subjects. Int J Mol Sci. 2013;14(2):2739–2752.
  • Xu A, Wang W, Jiang X. The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: a meta-analysis. Biosci Rep. 2018;38(6):BSR20181160.
  • Wang X, Wei H, Tian Y, et al. Genetic variation in folate metabolism is associated with the risk of conotruncal heart defects in a chinese population. BMC Pediatr. 2018;18(1):287.
  • Verkleij-Hagoort AC, van Driel LM, Lindemans J, et al. Genetic and lifestyle factors related to the periconception vitamin B12 status and congenital heart defects: a dutch case-control study. Mol Genet Metab. 2008;94(1):112–119.
  • van Beynum IM, Kouwenberg M, Kapusta L, et al. MTRR 66A > G polymorphism in relation to congenital heart defects. Clin Chem Lab Med. 2006;44(11):1317–1323.
  • Shaw GM, Lu W, Zhu H, et al. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet. 2009;10:49.
  • Wang T, Chen L, Ni B, et al. Maternal pre-pregnancy/early-pregnancy smoking and risk of congenital heart diseases in offspring: a prospective cohort study in Central China. J Glob Health. 2022;12:11009.
  • Wang T, Li Q, Chen L, et al. Effect of maternal alcohol consumption during the pre-pregnancy/early-pregnancy period on congenital heart disease: a prospective cohort study in Central China. Prev Med. 2022;155:106963.
  • Helle E, Priest JR. Maternal obesity and diabetes mellitus as risk factors for congenital heart disease in the offspring. J Am Heart Assoc. 2020;9(8):e011541.
  • Yang Y, Lin Q, Liang Y, et al. Maternal air pollution exposure associated with risk of congenital heart defect in pre-pregnancy overweighted women. Sci Total Environ. 2020;712:136470.
  • Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002;41(45):13378–13385.
  • Li WX, Dai SX, Zheng JJ, et al. Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients. 2015;7(8):6670–6687.
  • Su J, Li Z. Analysis of MTR and MTRR gene polymorphisms in chinese patients with ventricular septal defect. Appl Immunohistochem Mol Morphol. 2018;26(10):769–774.
  • Hassan FM, Khattab AA, Abo El Fotoh WMM, et al. A66G and C524T polymorphisms of methionine synthase reductase gene are linked to the development of acyanotic congenital heart diseases in egyptian children. Gene. 2017;629:59–63.
  • Zhao JY, Yang XY, Gong XH, et al. Functional variant in methionine synthase reductase intron-1 significantly increases the risk of congenital heart disease in the han chinese population. Circulation. 2012;125(3):482–490.
  • Yang B, Liu Y, Li Y, et al. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: findings from 15357 adults of han nationality. PLoS One. 2013;8(3):e57917.
  • Feix A, Winkelmayer WC, Eberle C, et al. Methionine synthase reductase MTRR 66A > G has no effect on total homocysteine, folate, and vitamin B12 concentrations in renal transplant patients. Atherosclerosis. 2004;174(1):43–48.
  • Yadav U, Kumar P, Rai V. Distribution of methionine synthase reductase (MTRR) gene A66G polymorphism in indian population. Indian J Clin Biochem. 2021;36(1):23–32.
  • Lai G, Wang L, Li Z, et al. Homocysteine downregulates cardiac homeobox transcription factor NKX2.5 via IGFBP5. Am J Physiol Heart Circ Physiol. 2020;319(6):H1380–H1386.
  • Zeng W, Liu L, Tong Y, et al. A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the chinese han population. Genet Mol Res. 2011;10(4):2597–2605.
  • Xu H, Guan Y. Detecting local haplotype sharing and haplotype association. Genetics. 2014;197(3):823–838.
  • Laramie JM, Wilk JB, DeStefano AL, et al. HaploBuild: an algorithm to construct non-contiguous associated haplotypes in family based genetic studies. Bioinformatics. 2007;23(16):2190–2192.
  • Li M, Erickson SW, Hobbs CA, et al. Detecting maternal-fetal genotype interactions associated with conotruncal heart defects: a haplotype-based analysis with penalized logistic regression. Genet Epidemiol. 2014;38(3):198–208.