626
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Phylogeny in Echinocereus (Cactaceae) based on combined morphological and molecular evidence: taxonomic implications

, , &
Pages 28-44 | Received 08 Oct 2016, Accepted 04 May 2017, Published online: 25 Jul 2017

References

  • Agnarsson, I., & Miller, J. A. (2008). Is ACCTRAN better than DELTRAN? Cladistics, 24, 1032–1038. doi: 10.1111/j.1096-0031.2008.00229.x
  • Albesiano, S., & Terrazas, T. (2012). Cladistic analysis of Trichocereus (Cactaceae: Cactoideae: Trichocereeae) based on morphological data and chloroplast DNA sequences: Dedicated to Omar Emilio Ferrari (1936-2010). Haseltonia, 17, 3–23. doi: https://doi.org/10.2985/1070-0048-17.1.2
  • Anderson, E. F. (2001). The cactus family. Portland, Oregon: Timber Press.
  • Arias, S., & Terrazas, T. (2006). Análisis cladístico del género Pachycereus (Cactaceae) con caracteres morfológicos. Brittonia, 58, 197–216. Retrieved from: http://www.jstor.org/stable/4099018 ( accessed 1 June 2017).
  • Arias, S., Terrazas, T., Arreola-Nava, H. J., Vázquez-Sánchez, M., & Cameron, K. M. (2005). Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. Journal of Plant Research, 118, 317–328. doi: 10.1007/s10265-005-0225-3
  • Assis, L. (2009). Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics, 25, 528–544. doi: 10.1111/j.1096-0031.2009.00261.x
  • Assis, L., & Rieppel, O. (2011). Are monophyly and synapomorphy the same or different? Revisiting the role of morphology in phylogenetics. Cladistics, 27, 94–102. doi: 10.1111/j.1096-0031.2010.00317.x
  • Baker, M. (2006a). A new florally dimorphic hexaploid, Echinocereus yavapaiensis sp. nov. (section Triglochidiatus, Cactaceae) from central Arizona. Plant Systematics and Evolution, 258, 63–83. doi: 10.1007/s00606-005-0390-9
  • Baker, M. (2006b). Circumscription of Echinocereus arizonicus subsp. arizonicus, Phenetic analysis of morphological characters in section Triglochidiatus (Cactaceae) part II. Madroño, 53, 388–399. doi: https://doi.org/10.3120/0024-9637(2006)53[388:COEASA]2.0.CO;2
  • Bárcenas, R. T., Yesson, C., & Hawkins, J. A. (2011). Molecular systematics of the Cactaceae. Cladistics, 27, 470–489. doi: 10.1111/j.1096-0031.2011.00350.x
  • Bárcenas, R. T. (2015). A molecular phylogenetic approach to the systematics of Cylindropuntieae (Opuntioideae, Cactaceae). Cladistics, doi, 10.1111/cla.12135
  • Berger, A. (1926). Die entwicklungslinien der Kakteen. Jena: G. Fisher.
  • Bergsten, J. (2005). A review of long-branch attraction. Cladistics, 21, 163–193. doi: 10.1111/j.1096-0031.2005.00059.x
  • Blum, W., Felix, D., & Bauer, H. (2012). Echinocereus Die Sektion Echinocereus. Der Echinocereenfreund, 25, 1–336.
  • Blum, W., Felix, D., & Waldeis, D. (2008). Echinocereus Die Sektion Wilcoxia. Der Echinocereenfreund, 21, 1–142.
  • Blum, W., Lange, M., Rischer, M., & Rutow, J. (1998). Echinocereus, Monographie. Aachen: Selbstverlag.
  • Box, M. S., & Glover, B. J. (2010). A plant developmentalist's guide to paedomorphosis, reintroducing a classic concept to a new generation. Trends in Plant Science, 15, 242–246. doi: 10.1016/j.tplants.2010.02.004
  • Bravo-Hollis, H. (1978). Las Cactáceas de México [The cacti of Mexico]. Vol. 1. Ciudad de México: Universidad Nacional Autónoma de México.
  • Bravo-Hollis, H., & Sánchez-Mejorada, H. (1991). Las Cactáceas de México [The cacti of Mexico]. Vol. 2. Ciudad de México: Universidad Nacional Autónoma de México.
  • Britton, N. L., & Rose, J. N. (1919). The Cactaceae. Vol. 1. Washington, DC: Carnegie Institution of Washington.
  • Britton, N. L., & Rose, J. N. (1920). The Cactaceae. Vol. 2. Washington, DC: Carnegie Institution of Washington.
  • Britton, N. L., & Rose, J. N. (1922). The Cactaceae. Vol. 3. Washington, DC: Carnegie Institution of Washington.
  • Britton, N. L., & Rose, J. N. (1923). The Cactaceae. Vol. 4. Washington, DC: Carnegie Institution of Washington.
  • Buxbaum, F. (1951). Morphology of cacti. Section I. Root and Stems. Pasadena, CA: Abbey Garden Press.
  • Buxbaum, F. (1953). Morphology of cacti. Section II. Flower. Pasadena, CA: Abbey Garden Press.
  • Buxbaum, F. (1955). Morphology of cacti. Section III. Fruits and seeds. Pasadena, CA: Abbey Garden Press.
  • Buxbaum, F. (1958). The phylogenetic division of the subfamily Cereoideae, Cactaceae. Madroño, 14, 177–206.
  • Calvente, A., Zappi, D. C., Forest, F., & Lohmann, L. G. (2011). Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora. Molecular Phylogenetics and Evolution, 58, 456–468. doi: 10.1016/j.ympev.2011.01.001
  • Cota, J. H. (1993). Pollination syndromes in the genus Echinocereus: A review. Cactus and Succulent Journal (US), 65, 19–26.
  • Cronk, Q., & Ojeda, I. (2008). Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany, 59(4), 715–727. doi: 10.1093/jxb/ern009
  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772–772. doi: 10.1038/nmeth.2109
  • de Carvalho, M. R. (1996). Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. In M. L. J. Stiassny, L. R. Parenti, & G. D. Johnson (Eds.), Interrelationships of Fishes 3 (pp. 35–62). San Diego, CA: Academic Press.
  • De Pinna, M. G. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7, 367–394. doi: 10.1111/j.1096-0031.1991.tb00045.x
  • Demaio, P. H., Barfuss, M. H., Kiesling, R., Till, W., & Chiapella, J. O. (2011). Molecular phylogeny of Gymnocalycium (Cactaceae): Assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. American Journal of Botany, 98, 1841–1854. doi: 10.3732/ajb.1100054
  • Edwards, E. J., Nyffeler, R., & Donoghue, M. J. (2005). Basal cactus phylogeny, implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. American Journal of Botany, 92, 1177–1188. doi: 10.3732/ajb.92.7.1177
  • Endler, J., & Buxbaum, F. (1974). Die Pflanzenfamilie der Kakteen (Ed 3.). Miden: A. Philler Verlag.
  • Engelmann, G. (1848). Botanical Appendix. In F. A. Wislizenus (Ed.), Memoir of a tour to Northern Mexico, connected with Col. Doniphan's Expedition, in 1846 and 1847 (pp. 87–115).
  • Engelmann, G. (1849). Echinocereus. In A. Grey (Ed.), Plantae Fendlerianae Novi-Mexicanae (Vol. 4, p. 50). Memoirs of the American Academy of Arts and Sciences.
  • Engelmann, G. (1859). Cactaceae of the Boundary (Report on the United States and Mexican Boundary Survey). Washington, DC: A.O.P. Nicholson.
  • Fuentes, M. (2004). Anatomia floral de algunas especies de Pachycereeae (Cactaceae) (Unpublished bachelor dissertation)., México: Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla.
  • Gibson, A. C., & Nobel, P. S. (1986). The cactus primer. Cambridge, MA: Harvard University Press.
  • Goloboff, P. A., Farris, J., & Nixon, K. (2008). T.N.T. Tree analysis using new technology. Cladistics, 24, 774–786. doi: 10.1111/j.1096-0031.2008.00217.x
  • Guerrero, P. C., Arroyo, M. T. K., Bustamante, R. O., Hagemann, T. K., & Walter, H. E. (2011). Phylogentics and predictive distribution modeling provide insights into the divergence of Eriosyce subgen. Neoporteria (Cactaceae). Plant Systematics and Evolution, 297, 113–128. doi: 10.1007/s00606-011-0512-5
  • Harpke, D., & Peterson, A. (2006). Non-concerted ITS evolution in Mammillaria (Cactaceae). Molecular Phylogenetics Evolution, 41, 579–593. doi: 10.1016/j.ympev.2006.05.036
  • Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.
  • Hernández-Ledesma, P., & Bárcenas, R. T. (2017). Phylogenetic utility of the trnH–psbA IGR and stem-loop diversity of the 3′ UTR in Cactaceae (Caryophyllales). Plant Systematics and Evolution, 1–17. doi: 10.1007/s00606-016-1372-9
  • Hughes, C. E., Lewis, G. P., Yomona, A. D., & Reynel, C. (2004). Maraniona. A new dalbergioid legume genus (Leguminosae, Papilionoideae) from Peru. Systematic Botany, 29, 366–374. doi:10.1600/036364404774195557
  • Hunt, D. R., Taylor, N. P., & Charles, G. (2006). The new cactus lexicon. Milborne Port: DH Books.
  • Kolaczkowski, B., & Thornton, J. W. (2009). Long-branch attraction bias and inconsistency in Bayesian phylogenetics. Public Library of Science One, 4, e7891. https://doi.org/10.1371/journal.pone.0007891
  • Korotkova, N., Borsch, T., Quandt, D., Taylor, N. P., Müller, K. F., & Barthlott, W. (2011). What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). American Journal of Botany, 98, 1549–1572. doi: 10.3732/ajb.1000502
  • Larridon, I., Walter, H. E., Guerrero, P. C., Duarte, M., Cisternas, M. A., Hernández, C. P., … Samain, M. S. (2015). An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. American Journal of Botany, 102, 1506–1520. doi:10.3732/ajb.1500168
  • Lartillot, N., & Philippe, H. (2004). A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution, 21, 1095–1109. doi: 10.1093/molbev/msh112
  • Lartillot, N., Brinkmann, H., & Philippe, H. (2007). Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BioMedCentral Evolutionary -Biology, 7, S4. doi: 10.1186/1471-2148-7-S1-S4
  • Loza-Cornejo, S., & Terrazas, T. (1996). Anatomía del tallo y raíz de dos especies de Wilcoxia Britton & Rose (Cactaceae) del noreste de México. Boletín de la Sociedad Botánica de México, 59, 13–23.
  • Luna, E., & Mishler, B. D. (1996). El concepto de homología filogenética y la selección de caracteres taxonómicos. Boletín de la Sociedad Botánica de México, 59, 131–146.
  • Maddison, W. P., & Maddison, D. R. (2015). Mesquite, a modular system for evolutionary analysis. Version 3.02. Retrieved from: http://mesquiteproject.org
  • Majure, L. C., Puente, R., Griffith, M. P., Judd, W. S., Soltis, P. S., & Soltis, D. E. (2012). Phylogeny of Opuntia s.s. (Cactaceae): Clade delineation, geographic origins, and reticulate evolution. American Journal of Botany, 99, 847–864. doi:10.3732/ajb.1100375
  • Mosco, A., (2009). Micro-morphology and anatomy of Turbinicarpus (Cactaceae) spines. Revista Mexicana de Biodiversidad, 80, 119–128.
  • Nelson, G. J. (1972). Phylogenetic relationship and classification. Systematic Zoology, 21, 227–231.
  • Nixon, K. C. (2002). WinClada, version 1.00. 08. Ithaca, NY.
  • Nixon, K. C., & Carpenter, J. M. (1996). On simultaneous analysis. Cladistics, 12, 221–241.
  • Nixon, K. C., & Carpenter, J. M. (2000). On the other “Phylogenetic Systematics”. Cladistics, 16, 298–318.
  • Nixon, K. C., & Ochoterena, H. (2000). Taxonomía tradicional, cladística y construcción de hipótesis filogenéticas. In H. M. Hernández, A. N. García Aldrete, F. Álvarez, & M. Ulloa (Eds.), Enfoques contemporáneos para el estudio de la biodiversidad (pp. 15–37). Ciudad de México: Universidad Nacional Autónoma de México & Fondo de Cultura Económica.
  • Norup, M. V., Dransfield, J., Chase, M. W., Barfod, A. S., Fernando, E. S., & Baker, W. J. (2006). Homoplasious character combinations and generic delimitation: A case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). American Journal of Botany, 93, 1065–1080. doi:10.3732/ajb.93.7.1065
  • Ochoterena, H. (2009). Homology in coding and non-coding DNA sequences, a parsimony perspective. Plant Systematics and Evolution, 282, 151–168. doi: 10.1007/s00606-008-0095-y
  • Patterson, C. (1982). Morphological characters and homology. Problems of phylogenetic reconstruction. London: Academic Press.
  • Perez, M. F., Carstens, B. C., Rodrigues, G. L., & Moraes, E. M. (2016). Anonymous nuclear markers data supporting species tree phylogeny and divergence time estimates in a cactus species complex in South America. Data in Brief, 6, 456–460.
  • Pol, D., & Siddall, M. E. (2001). Biases in maximum likelihood and parsimony, a simulation approach to a 10-taxon case. Cladistics, 17, 266–281. doi: 10.1111/j.1096-0031.2001.tb00123.x
  • Rindal, E., & Brower, A. V. (2011). Do model based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics, 27, 331–334. doi: 10.1111/j.1096-0031.2010.00342.x
  • Ritz, C. M., Martins, L., Mecklenburg, R., Goremykin, V., & Hellwig, F. H. (2007). The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American Mountain cacti. American Journal of Botany, 94, 1321–1332. doi:10.3732/ajb.94.8.1321
  • Ritz, C. M., Reiker, J., Charles, G., Hoxey, P., Hunt, D., Lowry, M., … Taylor, N. P. (2012). Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae− Opuntioideae). Molecular Phylogenetics and Evolution, 65, 668–681. doi: 10.1016/j.ympev.2012.07.027
  • Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3, Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
  • Rowley, G. D. (1974). The unhappy medium, Morangaya a new genus of Cactaceae. Ashingtonia, 1, 43–45.
  • Sánchez, D., Arias, S., & Terrazas, T. (2013). Análisis morfométrico de las especies de Echinocereus sección Triglochidiati (Cactaceae) en México. Brittonia, 65, 368–385. doi: 10.1007/s12228-012-9285-6
  • Sánchez, D., Arias, S., & Terrazas, T. (2014). Phylogenetic relationships in Echinocereus (Cactaceae, Cactoideae). Systematic Botany, 39, 1183–1196. doi: https://doi.org/10.1600/036364414 ×683831
  • Sánchez, D., Grego-Valencia, D., Terrazas, T., & Arias, S. (2015). How and why does the areole meristem move in Echinocereus (Cactaceae)? Annals of Botany, 115, 19–26. doi: 10.1093/aob/mcu208
  • Schlumpberger, B. O., & Renner, S. S., (2012). Molecular phylogenetics of Echinopsis (Cactaceae), polyphyly at all levels and convergent evolution of pollination modes and growth forms. American Journal of Botany, 99, 1335–1349. doi:10.3732/ajb.1100288
  • Schumann, K. (1899). Gesamtbeschreibung der Kakteen. Berlin: Neudamm.
  • Scotland, R. W., Olmstead, R. G., & Bennett, J. R. (2003). Phylogeny reconstruction, the role of morphology. Systematic Biology, 52, 539–548. doi: 10.1080/10635150390223613
  • Smith, S. A., & Donoghue, M. J. (2008). Rates of molecular evolution are linked to life history in flowering plants. Science, 322, 86–89. doi: 10.1126/science.1163197
  • Taylor, N. P. (1985). The genus Echinocereus. Middlesex: Kew Magazine Monograph.
  • Taylor, N. P. (1993). Ulteriori studi su Echinocereus. Piante Grasse, 13, 79–96.
  • Terrazas, T., & Loza-Cornejo, S. (2002). Phylogenetic relationships of Pachycereeae, a cladistic analysis based on anatomical and morphological data. In T. Fleming & A. Valiente-Banuet (Eds.), Columnar cacti and their mutualist, evolution, ecology, and conservation (pp. 66–86). Tucson: Arizona University Press.
  • Vázquez-Sánchez, M., & Terrazas, T. (2011). Stem and wood allometric relationships in Cacteae (Cactaceae). Trees, 25, 755–767. doi: 10.1007/s00468-011-0553-y
  • Vázquez-Sánchez, M., Terrazas, T., & Arias, S. (2012). El hábito y la forma de crecimiento en la tribu Cacteae (Cactaceae, Cactoideae). Botanical Sciences, 90, 97–108.
  • Vázquez-Sánchez, M., Terrazas, T., Arias, S., & Ochoterena, H. (2013). Molecular phylogeny, origin and taxonomic implications of the tribe Cacteae (Cactaceae). Systematics and Biodiversity, 11, 103–116. doi: 10.1080/14772000.2013.775191
  • Wallace, R. S., & Gibson, A. C. (2002). Evolution and systematics. In P. S. Nobel (Ed.), Cacti biology and uses (pp. 1–21). Berkeley: University of California Press.
  • Wortley, A. H., & Scotland, R. W., (2006). The effect of combining molecular and morphological data in published phylogenetic analyses. Systematic Biology, 55, 677–685. doi: 10.1080/10635150600899798

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.