1,487
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Origin and hidden diversity within the poorly known Galápagos snake radiation (Serpentes: Dipsadidae)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 614-642 | Received 08 Mar 2018, Accepted 16 May 2018, Published online: 22 Aug 2018

References

  • Aktas, C. (2015). Haplotypes: Haplotype inference and statistical analysis of genetic variation (version 1.0) [R package]. Retrieved from https://CRAN.R-project.org/package=haplotypes (accessed 16 May 2018).
  • Andjelković, M., Tomović, L., & Ivanović, A. (2016). Variation in skull size and shape of two snake species (Natrix natrix and Natrix tessellata). Zoomorphology, 135, 1–11.
  • Arnold, S. J., & Phillips, P. (1999). Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake, Thamnophis elegans. Evolution, 53, 1516–1527.
  • Arteaga, A., Mebert, K., Valencia, J. H., Cisneros-Heredia, D. F., Peñafiel, N., Reyes-Puig, C., … Guayasamin, J. M. (2017). Molecular phylogeny of Atractus (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa. ZooKeys, 661, 91–123.
  • Beebe, W. (1924). Galápagos: Word’s End. New York: Putnam & Sons.
  • Benavides, E., Baum, R., Snell, H. M., Snell, H. L., & Sites, J. W Jr.. (2009). Island biogeography of Galápagos lava lizards (Tropiduridae: Microlophus): Species diversity and colonization of the archipelago. Evolution, 63, 1606–1626.
  • Boback, S. M. (2003). Body size evolution in snakes: Evidence from island populations. Copeia, 1, 81–94.
  • Bouckaert, R. & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BioMedCentral Evolutionary Biology, 17, 42.
  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C-H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. Public Library of Science Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  • Butler, M. A., & King, A. (2004). Phylogenetic comparative analysis: A modeling approach for adaptive evolution. American Naturalist, 164, 683–695.
  • Butts, C. T. (2015). network: Classes for Relational Data. The StatnetProject (http://statnet.org) (version 1.13.0) [R package]. Retrieved from http://CRAN.R-project.org/package=network (accessed 16 May 2018).
  • Butts, C. T. (2016). sna: Tools for Social Network Analysis. (version 2.4) [R package]. Retrieved from https://CRAN.R-project.org/package=sna (accessed 16 May 2018).
  • Cadle, J. E. (1984a). Molecular systematics of Neotropical xenodontine snakes: I. South American xenodontines. Herpetologica, 40, 8–20.
  • Cadle, J. E. (1984b). Molecular systematics of Neotropical xenodontine snakes: II. Central American xenodontines. Systematics Zoology, 34, 1–20.
  • Cadle, J. E. (1984c). Molecular systematics of Neotropical xenodontine snakes. III. Overview of xenodontine phylogeny and the history of New World snakes. Copeia, 1984, 641–652.
  • Cadle, J. E. (1985). The Neotropical colubrid snake fauna (Serpentes: Colubridae): Lineage components and biogeography. Herpetologica, 40, 8–20.
  • Cadle, J. E., & Greene H. W. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. In R. E. Ricklefs & D. Schluter (Eds.), Species diversity in ecological communities (pp. 281–293). Chicago: The University of Chicago Press.
  • Carvalho, A. L. G., Sena, M. A., Peloso, P. L. V., Machado, F. A., Montesinos, R., Silva, H. R., … Rodriges, M. T. (2016). A New Tropidurus (Tropiduridae) from the Semiarid Brazilian Caatinga: Evidence for conflicting signal between mitochondrial and nuclear loci affecting the phylogenetic reconstruction of South American collared lizards. American Museum Novitates, 3852, 1–68.
  • Christie, D. M., Duncan, R. A., McBirney, A. R., Richards, M. A., White, W. M., Harp, K. S., & Fox, C. G. (1992). Drowned islands downstream from the Galápagos hotspot imply extended speciation times. Nature, 355, 246–248.
  • Dowling, H. (1951). A proposed method of expressing scale reductions in snakes. Copeia, 1951, 131–134.
  • Dunn, E. R. (1937). New or unnamed snakes from Costa Rica. Copeia, 1937, 213–215.
  • Emerson, B. C. (2002). Evolution on oceanic islands: Molecular phylogenetic approaches to understanding pattern and process. Molecular Ecology, 11, 951–966.
  • Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield R. T., & Glenn T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61, 717–726.
  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.
  • Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D., & Lailvaux, S. P. (2016). A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. Public Library of Science One, 11, e0161070.
  • Funk, V. A., & Wagner, W. L. (1995). Biogeographic patterns in the Hawaiian Islands. In W. L. Wagner & V. A. Funk (Eds.), Hawaiian biogeography: Evolution on a hot spot Archipelago (pp. 379–419). Washington: Smithsonian Institution Press.
  • Geist, D. (1996). On the emergence and submergence of the Galápagos Islands. Noticias de Galápagos, 56, 5–8.
  • Geist, D., Snell, H., Snell, H., Goddard, C., & Kurz, M. (2014). Paleogeography of the Galápagos Islands and biogeographical implications. In K. Harpp, E. Mittelstaedt, N. d’Ozouville & D.W. Graham (Eds.), The Galápagos: a natural laboratory for the earth sciences (pp. 145–166). Washington: American Geophysical Union.
  • Grazziotin, F. G., Zaher, H., Murphy R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012). Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics, 28, 437–59.
  • Hansen, T. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51, 1341–1351.
  • He, M., Feng, J.-C., Liu, S.-Y., Guo, P., & Zhao, E.-M. (2009). The phylogenetic position of Thermophis (Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang plateau, China. Journal of Natural History, 43, 479–488.
  • Hedges, S. B., Couloux, A., & Vidal, N. (2009). Molecular phylogeny, classification, and biogeography of West Indian racer snakes of the tribe Alsophiini (Squamata, Dipsadidae, Xenodontinae). Zootaxa, 2067, 1–28.
  • Itescu, Y., Schwarz, R., Donihue, C. M., Slavenko, A., Roussos, S. A., Sagonas, K., … & Meiri, S. (2018). Inconsistent patterns of body size evolution in co-occurring island reptiles. Global Ecology and Biogeography, 69, 473–513. http://doi.org/10.1111/geb.12716
  • Katoh, K., Kuma, K., Toh, H., & Miyata, T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518.
  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.
  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.
  • Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61, 727–744.
  • Lindell, L. E. (1994). The evolution of vertebral number and body size in snakes. Functional Ecology, 8, 708–719.
  • Machado, F. A., & Hingst-Zaher, E. (2009) Investigating South American biogeographic history using patterns of skull shape variation on Cerdocyon thous (Mammalia: Canidae). Biological Journal of the Linnean Society, 98, 77–84.
  • Merlen, G., & Thomas R. A. (2013). A Galápagos ectothermic terrestrial snake gambles a potential chilly bath for a protein-rich dish of fish. Herpetological Review, 44, 415–417.
  • Molina, F. B., Machado, F. A., & Zaher, H. (2012). Taxonomic validity of Mesoclemmys heliostemma (McCord, Joseph-Ouni & Lamar, 2001) (Testudines, Chelidae) inferred from morphological analysis. Zootaxa, 3575, 63–77.
  • Myers, C. W. (2003). Rare snakes – five new species from eastern Panamá: Reviews of northern Atractus and southern Geophis (Colubridae: Dipsadinae). American Museum Novitates, 3391, 1–47.
  • Myers, C. W., & Cadle, J. E. (2003). On the snake hemipenis, with notes on Psomophis and techniques of eversion: A response to Dowling. Herpetological Reviews, 34, 295–302.
  • Myers, C. W., & Hoogmoed, M. S. (1974). Zoogeographic and taxonomic status of the South American snake Tachymenis surinamensis (Colubridae). Zoologische Mededelingen, 48, 187–195.
  • Noonan, B. P., & Chippindale, P. T. (2006). Dispersal and vicariance: The complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40, 347–358.
  • O’Connor, J. M., Stoffers, P., Wijbrans, J. R., & Worthington, T. J. (2007), Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad melting anomaly? Earth and Planetary Science Letters, 263, 339–354.
  • Phillips, P., & Arnold, S. J. (1999). Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution, 53, 1506–1515.
  • Pinou, T., Vicario, S., Marschner, M., & Caccone, A. (2004). Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences. Molecular Phylogenetics and Evolution, 32, 563–574.
  • Pyron R. A., Arteaga A., Echevarría L. Y., & Torres-Carvajal, O. (2016). A revision and key for the tribe Diaphorolepidini (Serpentes: Dipsadidae) and checklist for the genus Synophis. Zootaxa, 4171, 293–320.
  • Pyron R. A., Burbrink F. T., & Wiens J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BioMed Central Evolutionary Biology, 13, 93.
  • Pyron, R. A., Guayasamin, J. M., Peñafiel, N., Bustamante, L., & Arteaga, A. (2015). Systematics of Nothopsini (Serpentes, Dipsadidae), with a new species of Synophis from the Pacific Andean slopes of southwestern Ecuador. ZooKeys, 541, 109–147.
  • Rambaut A., Suchard M. A., Xie, D., & Drummond A. J. (2014). Tracer (version 1.6). Retrieved from http://tree.bio.ed.ac.uk/software/tracer/ (accessed 16 May 2018).
  • Rice, A. M., & Pfennig, D. W. (2010). Does character displacement initiate speciation? Evidence of reduced gene flow between populations experiencing divergent selection. Journal of Evolutionary Biology, 23, 854–865. http://doi.org/10.1111/j.1420-9101.2010.01955.x
  • Schluter, D. (2000). Ecological character displacement in adaptive radiation. The American Naturalist, 156, 4–16.
  • Schluter, D., Price, T., Mooers, A.Ø., & Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution, 51, 1699–1711.
  • Segall, M., Cornette, R., Fabre, A.-C., Godoy-Diana, R., & Herrel, A. (2016). Does aquatic foraging impact head shape evolution in snakes? Proceedings of the Royal Society of London B, 283, 20161645–20161648. http://doi.org/10.1098/rspb.2016.1645
  • Sepulchre, P., Sloan, L. C., Snyder, M., & Fiechter, J. (2009). Impacts of Andean uplift on the Humboldt Current system: A climate model sensitivity study. Paleoceanography and Paleoclimatology, 24, PA4215.
  • Sequeira, A. S., Lanteri, A. A., Albelo, L. R., Bhattacharya, S., & Sijapati, M. (2008) Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils. Molecular Ecology, 17, 1089–1107.
  • Silva, F. M., de Oliveira, L. S., Nascimento, L. R., Machado, F. A. & Prudente, A. L. (2017). Sexual dimorphism and ontogenetic changes of Amazonian pit vipers (Bothrops atrox). Zoologischer Anzeiger, 271, 15–24. http://doi.org/10.1016/j.jcz.2017.11.001
  • Slevin, J. R. (1935). An account of the reptiles inhabiting the Galápagos Islands. Bulletin New York Zoological Society, 38, 3–25.
  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30, 1312–1313.
  • Thomas, R. A. (1997). Galápagos terrestrial snakes: Biogeography and systematics. Herpetological Natural History. 5, 19–40.
  • Torres-Carvajal, O., Barnes, C. W., Pozo-Andrade, M. J., Tapia, W., & Nicholls, G. (2014). Older than the islands: Origin and diversification of Galápagos leaf-toed geckos (Phyllodactylidae: Phyllodactylus) by multiple colonizations. Journal of Biogeography, 41, 1883–1894.
  • Van Denburgh, J. (1912), Expedition of the California Academy of Sciences to the Galápagos Islands, 1905-1906: IV. The Snake of the Galápagos Islands. Proceedings of the California Academy of Sciences, 1, 323–374.
  • Vidal, N., Dewynter, M., & Gower, D. J. (2010). Dissecting the major American snake radiation: A molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). Comptes Rendus Biologies, 333, 48–55.
  • Villa, J. (1971). Crisantophis, a new genus for Conophis nevermanni Dunn. Journal of Herpetology, 5, 173–177.
  • Vincent, S. E., Dang, P. D., Herrel, A., & Kley, N. J. (2006). Morphological integration and adaptation in the snake feeding system: A comparative phylogenetic study. Journal of Evolutionary Biology, 19, 1545–1554. http://doi.org/10.1111/j.1420-9101.2006.01126.x (accessed 16 May 2018).
  • Vincent, S. E., Herrel, A., & Irschick D. J. 2004. Sexual dimorphism in head shape and diet in the cottonmouth snake (Agkistrodon piscivorus). Journal of Zoology, London, 264, 53–59.
  • Wang, X. Messenger, K., Zhao, E., Zhu, C. (2014). Reclassification of Oligodon ningshaanensis Yuan, 1983 (Ophidia: Colubridae) into a new genus, Stichophanes gen. nov. with description on its malacophagous behavior. Asian Herpetological Research, 5, 137–149.
  • Werner, R., Hoernle, K., Van Den Bogaard, P., Ranero, C., von Huene R., & Korich, D. (1999). Drowned 14-my.-old Galápagos archipelago off the coast of Costa Rica: Implications for tectonic and evolutionary models. Geology, 27, 499–502.
  • Zaher, H. (1999). Hemipenial morphology of the South American xenodontine snakes: With a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bulletin of the American Museum of Natural History, 240, 1–168.
  • Zaher, H., & Prudente, A. L. (2003). Hemipenes of Siphlophis (Serpentes, Xenodontinae) and techniques of hemipenial preparation in snakes: A response to Dowling. Herpetological Review, 34, 302–306.
  • Zaher, H., Grazziotin, F. G., Cadle, J. E., Murphy, R. W., Moura-Leite, J. C., & Bonatto, S. L. (2009). Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: A revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia (São Paulo), 49, 115–153.
  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. http://doi.org/10.1111/j.2041-210X.2009.00001.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.