223
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Phylogenomic inference of the interrelationships of Lake Baikal sponges

ORCID Icon & ORCID Icon

References

  • Addis, J. S., & Peterson, K. J. (2005). Phylogenetic relationships of freshwater sponges (Porifera, Spongillina) inferred from analyses of 18S rDNA, COI mtDNA, and ITS2 rDNA sequences. Zoologica Scripta, 34(6), 549–557. https://doi.org/10.1111/j.1463-6409.2005.00211.x
  • Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data [Internet]. Retrieved May 12, 2020, from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  • Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176
  • Bukshuk, N. A., & Maikova, O. O. (2020). A new species of Baikal endemic sponges (Porifera, Demospongiae, Spongillida, Lubomirskiidae). ZooKeys, 906, 113–130. https://doi.org/10.3897/zookeys.906.39534
  • Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  • Carballo, J. L., Cruz-Barraza, J. A., Yáñez, B., & Gómez, P. (2018). Taxonomy and molecular systematic position of freshwater genus Racekiela (Porifera: Spongillida) with the description of a new species from North-west Mexico. Systematics and Biodiversity, 16(2), 160–170. https://doi.org/10.1080/14772000.2017.1359216
  • Efremova, S. M. (2004). New genus and new species of sponges from family Lubomirskiidae Rezvoj, 1936. In O. A. Timoshkin (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area, Vol. 1, Lake Baikal, Book 2 (pp. 1261–1278). Nauka.
  • Efremova, S. M., Itskovich, V. B., Parfenova, V., Drucker, V. V., Müller, W. E., & Schröder, H. C. (2002). Lake Baikal: A unique place to study evolution of sponges and their stress response in an environment nearly unimpaired by anthropogenic perturbation. Cellular and Molecular Biology, 48(4), 359–371.
  • Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 1–14. https://doi.org/10.1186/s13059-019-1832-y
  • Erpenbeck, D., Breeuwer, J. A. J., Parra-Velandia, F. J., & Van Soest, R. W. M. (2006). Speculation with spiculation? – Three independent gene fragments and biochemical characters versus morphology in demosponge higher classification. Molecular Phylogenetics and Evolution, 38(2), 293–305. https://doi.org/10.1016/j.ympev.2005.11.001
  • Erpenbeck, D., Galitz, A., Wörheide, G., Albrecht, C., Pronzato, R., & Manconi, R. (2020). Having the balls to colonize – The Ephydatia fluviatilis group and the origin of (ancient) lake “endemic” sponge lineages. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2019.09.028
  • Erpenbeck, D., Steiner, M., Schuster, A., Genner, M. J., Manconi, R., Pronzato, R., Ruthensteiner, B., van den Spiegel, D., van Soest, R. W., & Wörheide, G. (2019). Minimalist barcodes for sponges: A case study classifying African freshwater Spongillida. Genome, 62(1), 1–10. https://doi.org/10.1139/gen-2018-0098
  • Erpenbeck, D., Weier, T., De Voogd, N.J., Wörheide, G., Sutcliffe, P., Todd, J.A. and Michel, E. (2011). Insights into the evolution of freshwater sponges (Porifera: Demospongiae: Spongillina): Barcoding and phylogenetic data from Lake Tanganyika endemics indicate multiple invasions and unsettle existing taxonomy. Molecular Phylogenetics and Evolution, 61(1), 231–236.
  • Fernandez-Valverde, S. L., Calcino, A. D., & Degnan, B. M. (2015). Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica. BMC Genomics, 16(1), 387. https://doi.org/10.1186/s12864-015-1588-z
  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., & Regev, A. (2011). Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883
  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010
  • Itskovich, V. B. (2020). Intragenomic variation of rDNA internal transcribed spacers in the endemic Baikal sponge Lubomirskia baiсalensis: Implications for Porifera barcoding. Journal of Great Lakes Research, 46(1), 62–66. https://doi.org/10.1016/j.jglr.2019.10.009
  • Itskovich, V. B., Belikov, S. I., Efremova, S. M., & Masuda, Y. (1999). Phylogenetic relationships between Lubomirskiidae, Spongillidae and some marine sponges according partial sequences of 18S rRNA. Memoirs of the Queensland Museum, 44(1-2), 275–280.
  • Itskovich, V., Glyzina, O., & Kaluzhnaya, O. (2017). Intraspecific and interspecific sequence variability in the ITS region of the rDNA of freshwater sponges of Lake Baikal and East Siberia. Inland Waters, 7(3), 259–266. https://doi.org/10.1080/20442041.2017.1320507
  • Itskovich, V., Gontcharov, A., Masuda, Y., Nohno, T., Belikov, S., Efremova, S., Meixner, M., & Janussen, D. (2008). Ribosomal ITS sequences allow resolution of freshwater sponge phylogeny with alignments guided by secondary structure prediction. Journal of Molecular Evolution, 67(6), 608–620. https://doi.org/10.1007/s00239-008-9158-5
  • Itskovich, V. B., Kaluzhnaya, O. V., & Belikov, S. I. (2013). Investigation of nuclear and mitochondrial DNA polymorphism in closely related species of endemic Baikal sponges. Russian Journal of Genetics, 49(8), 839–846. https://doi.org/10.1134/S1022795413080036
  • Itskovich, V. B., Kaluzhnaya, O. V., Veynberg, E., & Erpenbeck, D. (2015). Endemic Lake Baikal sponges from deep water. 1: Potential cryptic speciation and discovery of living species known only from fossils. Zootaxa, 3990(1), 123–137. https://doi.org/10.11646/zootaxa.3990.1.7
  • Katoh, K., Kuma, K. I., Toh, H., & Miyata, T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518. https://doi.org/10.1093/nar/gki198
  • Kenny, N. J., Francis, W. R., Rivera-Vicéns, R. E., Juravel, K., de Mendoza, A., Díez-Vives, C., Lister, R., Bezares-Calderon, L., Grombacher, L., Roller, M., Barlow, L. D., Camilli, S., Ryan, J. F., Wörheide, G., Hill, A. L., Riesgo, A., & Leys, S. P. (2020). Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nature Communications, 11(1), 3676https://doi.org/10.1038/s41467-020-17397-w
  • Kenny, N. J., Plese, B., Riesgo, A., & Itskovich, V. B. (2019). Symbiosis, selection and novelty: Freshwater adaptation in the unique sponges of Lake Baikal. Molecular Biology and Evolution, 36(11), 2462–2480. https://doi.org/10.1093/molbev/msz151
  • Kocot, K. M., Citarella, M. R., Moroz, L. L., & Halanych, K. M. (2013). PhyloTreePruner: a phylogenetic tree-based approach for selection of orthologous sequences for phylogenomics. Evolutionary Bioinformatics, 9, EBO.S12813. https://doi.org/10.4137/EBO.S12813
  • Kück, P., & Longo, G. C. (2014). FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology, 11(1), 81. https://doi.org/10.1186/s12983-014-0081-x
  • Lavrov, D. V., Maikova, O. O., Pett, W., & Belikov, S. I. (2012). Small inverted repeats drive mitochondrial genome evolution in Lake Baikal sponges. Gene, 505(1), 91–99. https://doi.org/10.1016/j.gene.2012.05.039
  • Le, S., & Gascuel, O. (2008). An improved general amino-acid replacement matrix. Molecular Biology and Evolution, 25(7), 1307–1320. https://doi.org/10.1093/molbev/msn067
  • Lefort, V., Longueville, J. E., & Gascuel, O. (2017). SMS: smart model selection in PhyML. Molecular Biology and Evolution, 34(9), 2422–2424. https://doi.org/10.1093/molbev/msx149
  • Maikova, O., Khanaev, I., Belikov, S., & Sherbakov, D. (2015). Two hypotheses of the evolution of endemic sponges in Lake Baikal (Lubomirskiidae). Journal of Zoological Systematics and Evolutionary Research, 53(2), 175–179. https://doi.org/10.1111/jzs.12086
  • Maikova, O., Sherbakov, D., & Belikov, S. (2016). The complete mitochondrial genome of Baikalospongia intermedia (Lubomirskiidae): Description and phylogenetic analysis. Mitochondrial DNA Part B, 1(1), 569–570. https://doi.org/10.1080/23802359.2016.1172273
  • Maikova, O. O., Bukshuk, N. A., Itskovich, V. B., Khanaev, I. V., Nebesnykh, I. A., Onishchuk, N. A., & Sherbakov, D. Y. (2017). Transformation of Baikal sponges (family Lubomirskiidae) after penetration into the Angara River. Russian Journal of Genetics, 53(12), 1343–1349. https://doi.org/10.1134/S1022795417120092
  • Meixner, M. J., Luter, C., Eckert, C., Itskovich, V., Janussen, D., von Rintelen, T., Bohne, A. V., Meixner, J. M., & Hess, W. R. (2007). Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes. Molecular Phylogenetics and Evolution, 45(3), 875–886. https://doi.org/10.1016/j.ympev.2007.09.007
  • Morrow, C., & Cárdenas, P. (2015). Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology, 12(1), 7. https://doi.org/10.1186/s12983-015-0099-8
  • Naumenko, S. A., Logacheva, M. D., Popova, N. V., Klepikova, A. V., Penin, A. A., Bazykin, G. A., Etingova, A. E., Mugue, N. S., Kondrashov, A. S., & Yampolsky, L. Y. (2017). Transcriptome‐based phylogeny of endemic Lake Baikal amphipod species flock: Fast speciation accompanied by frequent episodes of positive selection. Molecular Ecology, 26(2), 536–553. https://doi.org/10.1111/mec.13927
  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
  • Philippe, H., Delsuc, F., Brinkmann, H., & Lartillot, N. (2005). Phylogenomics. Annual Review of Ecology, Evolution, and Systematics, 36(1), 541–562. https://doi.org/10.1146/annurev.ecolsys.35.112202.130205
  • Pile, A. J., Patterson, M. R., Savarese, M., Chernykh, V. I., & Fialkov, V. A. (1997). Trophic effects of sponge feeding within Lake Baikal’s littoral zone: 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnology and Oceanography, 42(1), 178–184. https://doi.org/10.4319/lo.1997.42.1.0178
  • Plese, B., Rossi, M. E., Kenny, N. J., Taboada, S., Koutsouveli, V., & Riesgo, A. (2019). Trimitomics: An efficient pipeline for mitochondrial assembly from transcriptomic reads in nonmodel species. Molecular Ecology Resources, 19(5), 1230–1239. https://doi.org/10.1111/1755-0998.13033
  • Qiu, F., Ding, S., Ou, H., Wang, D., Chen, J., & Miyamoto, M. M. (2015). Transcriptome changes during the life cycle of the red sponge, Mycale phyllophila (Porifera, Demospongiae, Poecilosclerida). Genes, 6(4), 1023–1052. https://doi.org/10.3390/genes6041023
  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032
  • Reid, P. J. W., Matveev, E., McClymont, A., Posfai, D., Hill, A. L., & Leys, S. P. (2018). Wnt signaling and polarity in freshwater sponges. BMC Evolutionary Biology, 18(1), 12.
  • Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. and Leys, S. P. (2014). The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Molecular biology and evolution, 31(5), 1102–1120.
  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  • Schröder, H. C., Efremova, S. M., Itskovich, V. B., Belikov, S., Masuda, Y., Krasko, A., Müller, I. M., & Müller, W. E. G. (2003). Molecular phylogeny of the freshwater sponges in Lake Baikal. Journal of Zoological Systematics and Evolutionary Research, 41(2), 80–86. https://doi.org/10.1046/j.1439-0469.2003.00199.x
  • Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
  • Sokolova, A. M., Palatov, D. M., & Itskovich, V. B. (2020). Genetic analysis confirms the freshwater origin of the endemic Caspian sponges (Demospongiae, Spongillida, Metschnikowiidae). ZooKeys, 915, 1–16. https://doi.org/10.3897/zookeys.915.47460
  • Timoshkin, O. A. (2001). Lake Baikal: Fauna diversity, problems of its immiscibility and origin, ecology and exotic communities. In O. A. Timoshkin (Eds.), Index of animal species inhabiting Lake Baikal and its catchment area. Nauka Publishers.
  • Yakhnenko, A. S., & Itskovich, V. B. (2020). Analysis of the variability of mtDNA in closely related species of Baikalian sponges for the development of new barcoding markers. Limnology, 21(1), 49–57. https://doi.org/10.1007/s10201-019-00599-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.