1,506
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution and biogeography of the Haploniscus belyaevi species complex (Isopoda: Haploniscidae) revealed by means of integrative taxonomy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Altabet, M. A., Deuser, W. G., Honjo, S., & Stienen, C. (1991). Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature, 354, 136–139. https://doi.org/10.1038/354136a0
  • Bandelt, H. J., Forster, P., Sykes, B. C., & Richards, M. B. (1995). Mitochondrial portraits of human populations using median networks. Genetics, 141, 743–753. https://doi.org/10.1093/genetics/141.2.743
  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41, D36–D42. https://doi.org/10.1093/nar/gks1195
  • Birstein, J. A. (1963a). Deep water isopods (Crustacea, Isopoda) of the north-western part of the Pacific Ocean. Nauka Publishing House, USSR Academy of Sciences, P.P. Shirshov Institute of Oceanography.
  • Birstein, J. A. (1963b). Isopods (Crustacea, Isopoda) from the ultra-abyssal zone of the Bougainville Trench. Zoologicheskii Zhurnal, 42, 814–834.
  • Birstein, J. A. (1971). Additions to the fauna of isopods (Crustacea: Isopoda) of the Kuril-Kamchatka Trench. Part 2. Asellota-2. Trudy Instituta Okeanologii Akademiya Nauk SSR, 92, 162–238.
  • Bober, J., Brandt, A., Frutos, I., & Schwentner, M. (2019). Diversity and distribution of Ischnomesidae (Crustacea: Isopoda: Asellota) along the Kuril-Kamchatka Trench – A genetic perspective. Progress in Oceanography, 178, 102174. https://doi.org/10.1016/j.pocean.2019.102174
  • Bober, S., Brix, S., Riehl, T., Schwentner, M., & Brandt, A. (2018). Does the Mid-Atlantic Ridge affect the distribution of abyssal benthic crustaceans across the Atlantic Ocean? Deep Sea Research Part II: Topical Studies in Oceanography, 148, 91–104. https://doi.org/10.1016/j.dsr2.2018.02.007
  • Bober, S., Riehl, T., Henne, S., & Brandt, A. (2018). New Macrostylidae (Isopoda) from the Northwest Pacific Basin described by means of integrative taxonomy with reference to geographical barriers in the abyss. Zoological Journal of the Linnean Society, 182, 549–603. https://doi.org/10.1093/zoolinnean/zlx042
  • Boltnev, A., Kacher, O. (2010). Panorama Stitcher Mini (1.10) [MacOS]. https://www.panoramastitcher.com
  • Bowen, B. W., Gaither, M. R., DiBattista, J. D., Iacchei, M., Andrews, K. R., Grant, W. S., Toonen, R. J., & Briggs, J. C. (2016). Comparative phylogeography of the ocean planet. Proceedings of the National Academy of Sciences of the United States of America, 113, 7962–7969. https://doi.org/10.1073/pnas.1602404113
  • Brandt, A. (2016). Kuril Kamchatka Biodiversity Studies II - RV Sonne SO250, Tomakomai-Yokohama (Japan), 16.08.-26.09.2016 (p. 174). [Cruise report]. University of Hamburg.
  • Brandt, A., Alalykina, I., Brix, S., Brenke, N., Błażewicz, M., Golovan, O. A., Johannsen, N., Hrinko, A. M., Jażdżewska, A. M., Jeskulke, K., Kamenev, G. M., Lavrenteva, A. V., Malyutina, M. V., Riehl, T., & Lins, L. (2019). Depth zonation of Northwest Pacific deep-sea macrofauna. Progress in Oceanography, 176, 102131. https://doi.org/10.1016/j.pocean.2019.102131
  • Brandt, A., Brix, S., Riehl, T., & Malyutina, M. (2020). Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions. Progress in Oceanography, 181, 102232. https://doi.org/10.1016/j.pocean.2019.102232
  • Brandt, A., Brökeland, W., Brix, S., & Malyutina, M. (2004). Diversity of Southern Ocean deep-sea Isopoda (Crustacea, Malacostraca)—A comparison with shelf data. Deep Sea Research Part II: Topical Studies in Oceanography, 51, 1753–1768. https://doi.org/10.1016/j.dsr2.2004.06.033
  • Brandt, A., Elsner, N., Brenke, N., Golovan, O., Malyutina, M. V., Riehl, T., Schwabe, E., & Würzberg, L. (2013). Epifauna of the Sea of Japan collected via a new epibenthic sledge equipped with camera and environmental sensor systems. Deep Sea Research Part II: Topical Studies in Oceanography, 86-87, 43–55. http://dx.doi.org/10.1016/j.dsr2.2012.07.039
  • Brandt, A., & Malyutina, M. V. (2015). The German-Russian deep-sea expedition KuramBio (Kurile Kamchatka biodiversity studies) on board of the RV Sonne in 2012 following the footsteps of the legendary expeditions with RV Vityaz. Deep Sea Research Part II: Topical Studies in Oceanography, 111, 1–9. http://dx.doi.org/10.1016/j.dsr2.2014.11.001
  • Brenke, N. (2005). An epibenthic sledge for operations on marine soft bottom and bedrock. Marine Technology Society Journal, 39, 10–21. https://doi.org/10.4031/002533205787444015
  • Brix, S., Leese, F., Riehl, T., & Kihara, T. C. (2015). A new genus and new species of Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Marine Biodiversity, 45, 7–61. https://doi.org/10.1007/s12526-014-0218-3
  • Brix, S., Osborn, K. J., Kaiser, S., Truskey, S. B., Schnurr, S. M., Brenke, N., Malyutina, M., & Martinez Arbizu, P. (2020). Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas. Biogeosciences, 17, 6163–6184. https://doi.org/10.5194/bg-17-6163-2020
  • Brix, S., Riehl, T., & Leese, F. (2011). First genetic data for species of the genus Haploniscus Richardson, 1908 (Isopoda: Asellota: Haploniscidae) from neighbouring deep-sea basins in the South Atlantic. Zootaxa, 2838, 79–84. https://doi.org/10.11646/zootaxa.2838.1.5
  • Brix, S., Stransky, B., Malyutina, M., Pabis, K., Svavarsson, J., & Riehl, T. (2018). Distributional patterns of isopods (Crustacea) in Icelandic and adjacent waters. Marine Biodiversity, 48, 783–811. https://doi.org/10.1007/s12526-018-0871-z
  • Brökeland, W. (2010a). Description of four new species from the Haploniscus unicornis Menzies, 1956 complex (Isopoda: Asellota: Haploniscidae). Zootaxa, 2536, 1–35. https://doi.org/10.11646/zootaxa.2536.1
  • Brökeland, W. (2010b). Redescription of Haploniscus rostratus (Menzies, 1962) (Crustacea: Peracarida: Isopoda) with observations on the postmarsupial development, size ranges and distribution. Zootaxa, 2521, 1–25. https://doi.org/10.11646/zootaxa.2521.1
  • Brökeland, W., & Raupach, M. J. (2008). A species complex within the isopod genus Haploniscus (Crustacea: Malacostraca: Peracarida) from the Southern Ocean deep sea: A morphological and molecular approach. Zoological Journal of the Linnean Society, 152, 655–706. https://doi.org/10.1111/j.1096-3642.2008.00362.x
  • Chernomor, O., von Haeseler, A., & Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. https://doi.org/10.1093/sysbio/syw037
  • Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (2002 TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International, 2, 7
  • Cordier, T., Angeles, I. B., Henry, N., Lejzerowicz, F., Berney, C., Morard, R., Brandt, A., Cambon-Bonavita, M.-A., Guidi, L., Lombard, F., Arbizu, P. M., Massana, R., Orejas, C., Poulain, J., Smith, C. R., Wincker, P., Arnaud-Haond, S., Gooday, A. J., de Vargas, C., & Pawlowski, J. (2022). Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Science Advances, 8, eabj9309. https://doi.org/10.1126/sciadv.abj9309
  • Daníelsdóttir, A., Gíslason, D., Kristinsson, K., Stefánsson, M., Johansen, T., & Pampoulie, C. (2008). Population structure of deep-sea and oceanic phenotypes of deepwater redfish in the Irminger Sea and Icelandic continental slope: Are they cryptic species? Transactions of the American Fisheries Society, 137, 1723–1740. https://doi.org/10.1577/T07-240.1
  • de León, G. P. -P., & Nadler, S. A. (2010). What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology, 96, 453–464. https://doi.org/10.1645/GE-2260.1
  • Delić, T., Trontelj, P., Rendoš, M., & Fišer, C. (2017). The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Scientific Reports, 7, 3391. https://doi.org/10.1038/s41598-017-02938-z
  • De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635150701701083
  • Duncan, T. K. (1983). Sexual dimorphism and reproductive behavior in Almyracuma proximoculi (Crustacea: Cumacea): The effect of habitat. The Biological Bulletin, 165, 370–378. https://doi.org/10.2307/1541202
  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. Columbia University Press.
  • Elsner, N. O., Malyutina, M. V., Golovan, O. A., Brenke, N., Riehl, T., & Brandt, A. (2015). Deep down: Isopod biodiversity of the Kuril–Kamchatka abyssal area including a comparison with data of previous expeditions of the RV Vityaz. Deep Sea Research Part II: Topical Studies in Oceanography, 111, 210–219. https://doi.org/10.1016/j.dsr2.2014.08.007
  • European Organization For Nuclear Research & OpenAIRE. (2013). Zenodo [Database]. Zenodo. https://doi.org/10.25495/7GXK-RD71
  • Goffredi, S., Hurtado, L., Hallam, S., & Vrijenhoek, R. (2003). Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “pacifica/lepta” species complex. Marine Biology, 142, 311–320. https://doi.org/10.1007/s00227-002-0941-3
  • GRASS Development Team (2020). Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation (7.8.1) [Computer software]. http://grass.osgeo.org
  • Grassle, J. F. (2000). The Ocean Biogeographic Information System (OBIS): An online, worldwide atlas for accessing, modeling and mapping marine biological data in a multidimensional geographic context. Oceanography, 13, 5–7. https://doi.org/10.5670/oceanog.2000.01
  • Hansen, H. J. (1916). Crustacea Malacostraca, III. V. The order Isopoda. In The Danish Ingolf-Expedition, 3, 1–262.
  • Harrison, K. (1989). Are deep-sea asellote isopods infaunal or epifaunal? Crustaceana, 56, 317–319. https://doi.org/10.1163/156854089X00284
  • Havermans, C., Sonet, G., d'Udekem d'Acoz, C., Nagy, Z. T., Martin, P., Brix, S., Riehl, T., Agrawal, S., & Held, C. (2013). Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PloS One, 8, e74218. https://doi.org/10.1371/journal.pone.0074218
  • Hebert, P. D., Cywinska, A., Ball, S. L., & Dewaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
  • Held, C. (2003). Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In A. H. L. Huiskes, W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies, & W. J. Wolff (Eds.), Antarctic biology in a global context. (pp. 135–139). Backhuys Publishers.
  • Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97–116. https://doi.org/10.1146/annurev.en.10.010165.000525
  • Hessler, R. R. (1970). The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda transect (Vol. 15). University of California Press. https://escholarship.org/uc/item/1mn198vx
  • Hessler, R. R., & Wilson, G. D. F. (1983). The origin and biogeography of malacostracan crustaceans in the deep sea. Evolution, Time and Space: The Emergence of the Biosphere, 23, 227–254.
  • Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192. https://doi.org/10.1093/sysbio/42.2.182
  • Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., & Martínez Arbizu, P. (2015). A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PloS One, 10, e0117790.
  • Jennings, R. M., Etter, R. J., & Ficarra, L. (2013). Population differentiation and species formation in the seep sea: The potential role of environmental gradients and depth. PloS One, 8, e77594. https://doi.org/10.1371/journal.pone.0077594
  • Jennings, R. M., Golovan, O., & Brix, S. (2020). Integrative species delimitation of desmosomatid and nannoniscid isopods from the Kuril-Kamchatka trench, with description of a hadal species. Progress in Oceanography, 182, 102236. https://doi.org/10.1016/j.pocean.2019.102236
  • Johannsen, N., Lins, L., Riehl, T., & Brandt, A. (2020). Changes in species composition of Haploniscidae (Crustacea: Isopoda) across potential barriers to dispersal in the Northwest Pacific. Progress in Oceanography, 180, 102233. https://doi.org/10.1016/j.pocean.2019.102233
  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066. https://doi.org/10.1093/nar/gkf436
  • Kniesz, K., Brandt, A., & Riehl, T. (2018). Peritrich epibionts on the hadal isopod species Macrostylis marionae n. Sp. From the Puerto Rico Trench used as indicator for sex-specific behaviour. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 105–129. https://doi.org/10.1016/j.dsr2.2017.10.007
  • Knowlton, N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics, 24, 189–216. https://doi.org/10.1146/annurev.es.24.110193.001201
  • Korshunova, T., Martynov, A., & Picton, B. (2017). Ontogeny as an important part of integrative taxonomy in Tergipedid aeolidaceans (Gastropoda: Nudibranchia) with a description of a new genus and species from the Barents Sea. Zootaxa, 4324, 1–22. https://doi.org/10.11646/zootaxa.4324.1.1
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
  • Lembke-Jene, L., Tiedemann, R., Nürnberg, D., Gong, X., & Lohmann, G. (2018). Rapid shift and millennial-scale variations in Holocene North Pacific Intermediate Water ventilation. Proceedings of the National Academy of Sciences of the United States of America, 115, 5365–5370. https://doi.org/10.1073/pnas.1714754115
  • Letunic, I., & Bork, P. (2007). Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics (Oxford, England), 23, 127–128. https://doi.org/10.1093/bioinformatics/btl529
  • Lilljeborg, W. (1864). Bidrag till Kännedomen om de inom Sverige och Norrige förekommande Crustaceer af Isopodernas underordning och Tanaidernas familj. Leffler. http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb10231589-9
  • Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299. https://doi.org/10.1016/0169-5347(95)90031-4
  • Malyutina, M. V., Brandt, A., & Ivin, V. I. (2015). The Russian-German deep-sea expedition SokhoBio (Sea of Okhotsk Biodiversity Studies) to the Kurile Basin of the Sea of Okhotsk on board of the R/V Akademik M. A. Lavrentyev (p. 102) [Cruise report].
  • Malyutina, M. V., Chernyshev, A. V., & Brandt, A. (2018). Introduction to the SokhoBio (Sea of Okhotsk Biodiversity Studies) expedition 2015. Deep Sea Research Part II: Topical Studies in Oceanography, 154, 1–9. https://doi.org/10.1016/j.dsr2.2018.08.012
  • Mason, D. J., Butlin, R. K., & Gacesa, P. (1995). An unusual mitochondrial DNA polymorphism in the Chorthippus biguttulus species group (Orthoptera: Acrididae). Molecular Ecology, 4, 121–126. https://doi.org/10.1111/j.1365-294X.1995.tb00199.x
  • Mayr, E. (1963). Animal species and evolution. Harvard University Press. Oxford University Press. https://www.cabdirect.org/cabdirect/abstract/19640100703
  • McCallum, A., & Riehl, T. (2020). Intertidal to Abyss: Crustaceans and Depth. In Evolution and Biogeography—The Natural History of the Crustacea (Vol. 8, pp. 429–449). Oxford University Press. https://global.oup.com/academic/product/the-natural-history-of-the-crustacea-9780190637842?lang=en&cc=de#
  • McClain, C. R., Webb, T. J., Nunnally, C. C., Dixon, S. R., Finnegan, S., & Nelson, J. A. (2020). Metabolic Niches and Biodiversity: A Test Case in the Deep Sea Benthos. Frontiers in Marine Science, 7, 216. https://doi.org/10.3389/fmars.2020.00216
  • Methou, P., Michel, L. N., Segonzac, M., Cambon-Bonavita, M.-A., & Pradillon, F. (2020). Integrative taxonomy revisits the ontogeny and trophic niches of Rimicaris vent shrimps. Royal Society Open Science, 7, 200837. https://doi.org/10.1098/rsos.200837
  • Michels, J., & Büntzow, M. (2010). Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. Journal of Microscopy, 238, 95–101. https://doi.org/10.1111/j.1365-2818.2009.03360.x
  • Microsoft Corporation. (2015). Image Composite Editor (2.0.3.0) [Windows]. Microsoft Corporation. https://www.microsoft.com/en-us/research/product/computational-photography-applications/image-composite-editor/
  • Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on Earth and in the ocean? Public Library of Science Biology, 9, e1001127. https://doi.org/10.1371/journal.pbio.1001127
  • Niedzielski, T., Høines, Å., Shields, M. A., Linley, T. D., & Priede, I. G. (2013). A multi-scale investigation into seafloor topography of the northern Mid-Atlantic Ridge based on geographic information system analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 98, 231–243. https://doi.org/10.1016/j.dsr2.2013.10.006
  • Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16. https://doi.org/10.1186/1742-9994-7-16
  • Page, T. J., Choy, S. C., & Hughes, J. M. (2005). The taxonomic feedback loop: Symbiosis of morphology and molecules. Biology Letters, 1, 139–142. https://doi.org/10.1098/rsbl.2005.0298
  • Pante, E., Puillandre, N., Viricel, A., Arnaud‐Haond, S., Aurelle, D., Castelin, M., Chenuil, A., Destombe, C., Forcioli, D., Valero, M., Viard, F., & Samadi, S. (2015). Species are hypotheses: Avoid connectivity assessments based on pillars of sand. Molecular Ecology, 24, 525–544. https://doi.org/10.1111/mec.13048
  • Pasotti, F., Mevenkamp, L., Pape, E., Błażewicz, M., Bonifácio, P., Riehl, T., De Smet, B., Lefaible, N., Lins, L., & Vanreusel, A. (2021). A local scale analysis of manganese nodules influence on the Clarion-Clipperton Fracture Zone macrobenthos. Deep Sea Research Part I: Oceanographic Research Papers, 168, 103449. https://doi.org/10.1016/j.dsr.2020.103449
  • Patterson, D. J., Cooper, J., Kirk, P. M., Pyle, R. L., & Remsen, D. P. (2010). Names are key to the big new biology. Trends in Ecology & Evolution, 25, 686–691. https://doi.org/10.1016/j.tree.2010.09.004
  • Paulus, E., Brix, S., Siebert, A., Martínez Arbizu, P., Rossel, S., Peters, J., Svavarsson, J., & Schwentner, M. (2022). Recent speciation and hybridization in Icelandic deep-sea isopods: An integrative approach using genomics and proteomics. Molecular Ecology, 31, 313–330. https://doi.org/10.1111/mec.16234
  • Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: Assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
  • QGIS.org. (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project (3.10.1) [Computer software]. http://qgis.org
  • Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x
  • Raupach, M. J., & Wägele, J.-W. (2006). Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—A preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarctic Science, 18, 191–198. https://doi.org/10.1017/S0954102006000228
  • Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale. Harvard University Press.
  • Rex, M. A., McClain, C. R., Johnson, N. A., Etter, R. J., Allen, J. A., Bouchet, P., & Warén, A. (2005). A Source‐Sink Hypothesis for Abyssal Biodiversity. The American Naturalist, 165, 163–178. https://doi.org/10.1086/427226
  • Riehl, T., & Kühn, M. A. L. (2020). Uniting what belongs together—Reevaluation of the isopod species Macrostylis grandis and M. ovata using ontogenetic, morphological and genetic evidence. Progress in Oceanography, 181, 102238. https://doi.org/10.1016/j.pocean.2019.102238
  • Riehl, T., Brenke, N., Brix, S., Driskell, A., Kaiser, S., & Brandt, A. (2014). Field and laboratory methods for DNA studies on deep-sea Isopod Crustaceans. Polish Polar Research, 35, 203–224. https://doi.org/10.2478/popore-2014-0018
  • Riehl, T., Lins, L., & Brandt, A. (2018). The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep Sea Research Part II: Topical Studies in Oceanography, 148, 74–90. https://doi.org/10.1016/j.dsr2.2017.10.005
  • Riehl, T., Wilson, G. D. F., & Hessler, R. R. (2012). New Macrostylidae Hansen, 1916 (Crustacea: Isopoda) from the Gay Head-Bermuda transect with special consideration of sexual dimorphism. Zootaxa, 3277, 1–26. https://doi.org/10.11646/zootaxa.3277.1.1
  • Riehl, T., Wilson, G. D. F., & Malyutina, M. V. (2014). Urstylidae — a new family of abyssal isopods (Crustacea: Asellota) and its phylogenetic implications. Zoological Journal of the Linnean Society, 170, 245–296. https://doi.org/10.1111/zoj.12104
  • Riehl, T., Wölfl, A.-C., Augustin, N., Devey, C. W., & Brandt, A. (2020). Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 117, 15450–15459. https://doi.org/10.1073/pnas.1920706117
  • Rivera, A. S., & Oakley, T. H. (2009). Ontogeny of sexual dimorphism via tissue duplication in an ostracod (Crustacea). Evolution & Development, 11, 233–243. https://doi.org/10.1111/j.1525-142X.2009.00323.x
  • Ruhl, H. A., Ellena, J. A., & Smith, K. L. (2008). Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 17006–17011. https://doi.org/10.1073/pnas.0803898105
  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  • Sars, G. O. (1899). An account of the Crustacea of Norway, with short descriptions and figures of all the species (Vol. 2 (1899) [Isopoda], pp.1–516). https://www.biodiversitylibrary.org/item/100338
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K. W., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.2019
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089
  • Sigwart, J. D., Blasiak, R., Jaspars, M., Jouffray, J.-B., & Tasdemir, D. (2021). Unlocking the potential of marine biodiscovery. Natural Product Reports, 38, 1235–1242. https://doi.org/10.1039/d0np00067a
  • Silva, C. N. S., Murphy, N. P., Bell, J. J., Green, B. S., Duhamel, G., Cockcroft, A. C., Hernández, C. E., & Strugnell, J. M. (2021). Global drivers of recent diversification in a marine species complex. Molecular Ecology, 30, 1223–1236. https://doi.org/10.1111/mec.15780
  • Stewart, H. A., & Jamieson, A. J. (2018). Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. Progress in Oceanography, 161, 47–65. https://doi.org/10.1016/j.pocean.2018.01.007
  • Taylor, M. L., & Roterman, C. N. (2017). Invertebrate population genetics across Earth’s largest habitat: The deep-sea floor. Molecular Ecology, 26, 4872–4896. https://doi.org/10.1111/mec.14237
  • Tyler, P. A. (2002). Deep-sea eukaryote ecology of the semi-isolated basins off Japan. Journal of Oceanography, 58, 333–341. https://doi.org/10.1023/A:1015817910449
  • Vrijenhoek, R. C. (2009). Cryptic species, phenotypic plasticity, and complex life histories: Assessing deep-sea faunal diversity with molecular markers. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 1713–1723. https://doi.org/10.1016/j.dsr2.2009.05.016
  • Watling, L., Guinotte, J., Clark, M. R., & Smith, C. R. (2013). A proposed biogeography of the deep ocean floor. Progress in Oceanography, 111, 91–112. https://doi.org/10.1016/j.pocean.2012.11.003
  • Wilson, G. D. F. (1981). Taxonomy and postmarsupial development of a dominant deep-sea eurycopid isopod (Crustacea). Proceedings of the Biological Society of Washington, 94, 276–294.
  • Wilson, G. D. F., & Hessler, R. R. (1987). Speciation in the deep sea. Annual Review of Ecology and Systematics, 18, 185–207. https://doi.org/10.1146/annurev.es.18.110187.001153
  • Wolff, T. (1962). The systematics and biology of bathyal and abyssal Isopoda Asellota. Galathea Report, 6, 1–320.
  • Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A., & Boyle, E. E. (2006). Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Molecular Ecology, 15, 639–651. https://doi.org/10.1111/j.1365-294X.2005.02832.x
  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England), 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499