332
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Species distribution modelling and predictor variables for species distribution and niche preferences of Pilosocereus leucocephalus group s.s. (Cactaceae)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aguirre-Gutiérrez, J., Serna-Chavez, H. M., Villalobos-Arambula, A. R., Pérez de la Rosa, J. A., & Raes, N. (2015). Similar but not equivalent: Ecological niche comparison across closely-related Mexican white pines. Diversity and Distributions, 21, 245–257. https://doi.org/10.1111/ddi.12268
  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132
  • Alvarado-Sizzo, H., Casas, A., Parra, F., Arreola-Nava, H. J., Terrazas, T., & Sánchez, C. (2018). Species delimitation in the Stenocereus griseus (Cactaceae) species complex reveals a new species, S. huastecorum. Public Library of Science One, 13, e0190385. https://doi.org/10.1371/journal.pone.0190385
  • Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040. https://doi.org/10.1038/sdata.2018.40
  • Anderson, E. F. (2001). The cactus family. Timber Press.
  • Aquino, D., Moreno-Letelier, A., González-Botello, M. A., & Arias, S. (2021). The importance of environmental conditions in maintaining lineage identity in Epithelantha (Cactaceae). Ecology and Evolution, 11, 4520–4531. https://doi.org/10.1002/ece3.7347
  • Bárcenas-Argüello, M. L., del Carmen Gutiérrez-Castorena, M., Terrazas, T., & López-Mata, L. (2010). Rock-soil preferences of three Cephalocereus (Cactaceae) species of tropical dry forests. Soil Science Society of America Journal, 74, 1374–1382. https://doi.org/10.2136/sssaj2009.0310
  • Barrios, D., Sánchez, J. A., Flores, J., & Jurado, E. (2020). Seed traits and germination in the Cactaceae family: A review across the Americas. Botanical Sciences, 98, 417–440. https://doi.org/10.17129/botsci.2501
  • Barthlott, W., Burstedde, K., Geffert, J., Ibisch, P., Korotkova, N., Miebach, A., Rafiqpoor, M., Stein, A., & Mutke, J. (2015). Biogeography and biodiversity of cacti. Schumannia, 7, 1–205.
  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
  • Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination (2nd ed.). Academic Press.
  • Batjes, N. H. (2012). ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2) (Report 2012/01). ISRIC-World Soil Information, Wageningen. https://www.isric.org/sites/default/files/isric_report_2012_01.pdf.
  • Bautista, F., Palacio, G., Páez-Bistraín, R., Carmona-Jiménez, M. E., Delgado-Carranza, C., Cantarell, W., & Tello, H. (2011). Geografía de suelos regional: Península de Yucatán. In P. Krasilnikov, Jiménez N. F. J., T. R. Trujillo, & García C. N. E. (Eds.), Geografía de suelos de México (pp. 355–402). Las prensas de ciencias, Universidad Nacional Autónoma de México.
  • Bonatelli, I. A. S., Perez, M. F., Peterson, A. T., Taylor, N. P., Zappi, D. C., Machado, M. C., Koch, I., Pires, A. H. C., & Moraes, E. M. (2014). Interglacial microrefugia and diversification of a cactus species complex: Phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Molecular Ecology, 23, 3044–3063. https://doi.org/10.1111/mec.12780
  • Bradie, J., & Leung, B. (2017). A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography, 44, 1344–1361. https://doi.org/10.1111/jbi.12894
  • Burke, R. A., Frey, J. K., Ganguli, A., & Stoner, K. E. (2019). Species distribution modelling supports “nectar corridor” hypothesis for migratory nectarivorous bats and conservation of tropical dry forest. Diversity and Distributions, 25, 1399–1415. https://doi.org/10.1111/ddi.12950
  • Calvente, A., Moraes, E. M., Lavor, P., Bonatelli, I. A. S., Nacaguma, P., Versieux, L. M., Taylor, N. P., & Zappi, D. C. (2016). Phylogenetic analyses of Pilosocereus (Cactaceae) inferred from plastid and nuclear sequences. Botanical Journal of the Linnean Society, 183, 25–38. https://doi.org/10.1111/boj.12491
  • Cornejo-Romero, A., Vargas-Mendoza, C. F., Aguilar-Martínez, G. F., Medina-Sánchez, J., Rendón-Aguilar, B., Valverde, P. L., Zavala-Hurtado, J. A., Serrato, A., Rivas-Arancibia, S., Pérez-Hernández, M. A., López-Ortega, G., & Jiménez-Sierra, C. (2017). Alternative glacial-interglacial refugia demographic hypotheses tested on Cephalocereus columna-trajani (Cactaceae) in the intertropical Mexican drylands. Public Library of Science One, 12, e0175905. https://doi.org/10.1371/journal.pone.0175905
  • Crisp, M. D., & Cook, L. G. (2007). A congruent molecular signature of vicariance across multiple plant lineages. Molecular Phylogenetics and Evolution, 43, 1106–1117. https://doi.org/10.1016/j.ympev.2007.02.030
  • Cruz-Cárdenas, G., López-Mata, L., Villaseñor, J. L., & Ortiz, E. (2014). Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad, 85, 189–199. https://doi.org/10.7550/rmb.36723
  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  • Drennan, P. M. (2009). Temperature influences on plant species of arid and semi-arid regions with emphasis on CAM succulents. In E. De la Barrera &W. K. Smith (Eds.), Perspectives in biophysical plant ecophysiology: A tribute to Park S. Nobel (pp. 57–94). Universidad Nacional Autónoma de México.
  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., … E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Evans, M. E. K., Smith, S. A., Flynn, R. S., & Donoghue, M. J. (2009). Climate, niche evolution, and diversification of the “Bird‐Cage” evening primroses (Oenothera, sections Anogra and Kleinia). The American Naturalist, 173, 225–240. https://doi.org/10.1086/595757
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
  • Franck, A. R., Barrios, D., Campbell, K. C. S. E., Lange, J., Peguero, B., Santiago-Valentín, E., Rigerszki, Z., Haakonsson, J., Gann, G. D., Cinea, W., Howe, N. M. M., John, J. S., Moreno, J. S., & Clark, C. A. (2019). Revision of Pilosocereus (Cactaceae) in the Caribbean and northern Andean region. Phytotaxa, 411, 129–182. https://doi.org/10.11646/phytotaxa.411.3.1
  • Franco-Estrada, D., Barrios, D., Cervantes, C. R., Granados-Aguilar, X., & Arias, S. (2022). Phylogenetic and morphological analyses of Pilosocereus leucocephalus group s.s. (Cactaceae) reveal new taxonomical implications. Journal of Plant Research, 135, 423–442. https://doi.org/10.1007/s10265-022-01384-x
  • Gao, P., Xie, J., Yang, M., Zhou, P., Chen, W., Liang, G., Chen, Y., Han, X., & Wang, W. (2021). Improved soil moisture and electrical conductivity prediction of citrus orchards based on IoT using deep bidirectional LSTM. Agriculture, 11, 635. https://doi.org/10.3390/agriculture11070635
  • Gibson, A. C., & Nobel, P. S. (1986). The cactus primer. Harvard University Press.
  • Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19, 497–503. https://doi.org/10.1016/j.tree.2004.07.006
  • Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G., & Körber, J.-H. (2007). Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16, 754–763. https://doi.org/10.1111/j.1466-8238.2007.00345.x
  • Hunt, D., Taylor, N., & Charles, G. (2006). The new cactus lexicon. DH Books.
  • Kass, J. M., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C., &Anderson, R. P. (2018). Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution, 9, 1151–1156. https://doi.org/10.1111/2041-210X.12945
  • Knouft, J. H., Losos, J. B., Glor, R. E., & Kolbe, J. J. (2006). Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87, S29–S38. https://doi.org/10.1890/0012-9658(2006)87[29:PAOTEO]2.0.CO;2[PMC][16922300
  • Lavor, P., Calvente, A., Versieux, L. M., & Sanmartin, I. (2018). Bayesian spatio-temporal reconstruction reveals rapid diversification and Pleistocene range expansion in the widespread columnar cactus Pilosocereus. Journal of Biogeography, 46, 238–250. https://doi.org/10.1111/jbi.13481
  • Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778–789. https://doi.org/10.1111/jbi.12058
  • Loaiza-S, C. R. (2017). Área de vida, distribución potencial y estado de conservación de Espostoa frutescens Madsen, 1989 (Cactaceae). Ecología Aplicada, 16, 1–7. https://doi.org/10.21704/rea.v16i1.897
  • Loik, M. E., & Nobel, P. S. (1993). Freezing tolerance and water relations of Opuntia fragilis from Canada and the United States. Ecology, 74, 1722–1732. https://doi.org/10.2307/1939931
  • Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
  • Lott, E. J., & Atkinson, T. H. (2006). Mexican and Central American seasonally dry tropical forests: Chamela-Cuixmala, Jalisco, as a focal point for comparison. In R. T. Pennington, G. P. Lewis, & J. A. Ratter (Eds.), Neotropical savannas and seasonally dry forests: Plant diversity, biogeography, and conservation (pp. 315–342). CRC Press Taylor & Francis Group.
  • Luna-Aranguré, C., Soberón, J., & Vázquez-Domínguez, E. (2020). A tale of four bears: Environmental signal on the phylogeographical patterns within the extant Ursus species. Journal of Biogeography, 47, 472–486. https://doi.org/10.1111/jbi.13752
  • Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ. 5, e3093. https://doi.org/10.7717/peerj.3093
  • Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782, 1–110. https://doi.org/10.11646/zootaxa.3782.1.1
  • Morrone, J. J., Escalante, T., & Rodríguez-Tapia, G. (2017). Mexican biogeographic provinces: Map and shapefiles. Zootaxa, 4277, 277–279. https://doi.org/10.11646/zootaxa.4277.2.8
  • Mourelle, C., & Ezcurra, E. (1996). Species richness of Argentine cacti: A test of biogeographic hypotheses. Journal of Vegetation Science, 7, 667–680. https://doi.org/10.2307/3236378
  • Mourelle, C., & Ezcurra, E. (1997). Differentiation diversity of Argentine cacti and its relationship to environmental factors. Journal of Vegetation Science, 8, 547–558. https://doi.org/10.2307/3237206
  • Munguía-Rosas, M. A., & Sosa, V. J. (2010). Phenology of Pilosocereus leucocephalus (Cactaceae, tribe Cereeae): A columnar cactus with asynchronous pulsed flowering. Plant Ecology, 211, 191–201. https://doi.org/10.1007/s11258-010-9784-z
  • Nieder, R., & Benbi, D. K. (2008). Carbon and nitrogen in the terrestrial environment. Springer Science + Business Media B.V.
  • Nobel, P. S. (1988). Environmental biology of agaves and cacti. Cambridge University Press.
  • Nobel, P. S. (2011). Sabiduría del desierto, agaves y cactos: CO2, agua, cambio climático. Biblioteca Básica de Agricultura.
  • Nobel, P. S., & Bobich, E. G. (2002). Environmental biology. In P. S. Nobel (Ed.), Cacti: Biology and uses. (pp. 57–74). University of California Press.
  • Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A. T., Falconi, M., Contreras-Díaz, R. G., Martínez-Meyer, E., Barve, V., & Barve, N. (2020). Ntbox: An R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452
  • Pearson, R. G., Dawson, T. P., Berry, P. M., & Harrison, P. A. (2002). SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154, 289–300. https://doi.org/10.1016/S0304-3800(02)00056-X
  • Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography, 38, 817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x
  • Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
  • Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10, 102–107. https://doi.org/10.4322/natcon.2012.019
  • Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB-49). Princeton University Press.
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling [Paper presentation]. Proceedings of the Twenty-First International Conference on Machine Learning, 83. https://doi.org/10.1145/1015330.1015412.
  • Prado, R. M. (2021). Mineral nutrition of tropical plants. Springer Nature Switzerland AG.
  • Quipildor, V. B., Kitzberger, T., Ortega-Baes, P., Quiroga, M. P., & Premoli, A. C. (2018). Regional climate oscillations and local topography shape genetic polymorphisms and distribution of the giant columnar cactus Echinopsis terscheckii in drylands of the tropical Andes. Journal of Biogeography, 45, 116–126. https://doi.org/10.1111/jbi.13106
  • R Core Team. (2013). R: A language and environment for statistical computing (Version 1.4.1). [Computer software]. http://www.r-project.org/
  • Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., & Pearson, R. G. (2007). Applications of ecological niche modeling for species delimitation: A review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology, 56, 907–923. https://doi.org/10.1080/10635150701775111
  • Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J. P., & Domínguez, J. (2019). Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Scientific Reports, 9, 4221. https://doi.org/10.1038/s41598-019-40766-5[PMC][30862919
  • Rehfeldt, G. E., Jaquish, B. C., López-Upton, J., Sáenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: Realized climate niches. Forest Ecology and Management, 324, 126–137. https://doi.org/10.1016/j.foreco.2014.02.035
  • Rodríguez-Rodríguez, E. J., Beltrán, J. F., Tejedo, M., Nicieza, A. G., Llusia, D., Márquez, R., & Aragón, P. (2020). Niche models at inter- and intraspecific levels reveal hierarchical niche differentiation in midwife toads. Scientific Reports, 10, 10942. https://doi.org/10.1038/s41598-020-67992-6[PMC][32616878
  • Rojas-Aréchiga, M., Mandujano, M. C., & Golubov, J. K. (2013). Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae). Journal of Plant Research, 126, 373–386. https://doi.org/10.1007/s10265-012-0526-2
  • Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408–418. https://doi.org/10.2307/1935376
  • Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 6, 249–263. https://doi.org/10.1002/2013MS000293
  • Shcheglovitova, M., & Anderson, R. P. (2013). Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9–17. https://doi.org/10.1016/j.ecolmodel.2013.08.011
  • Shinneman, D. J., Means, R. E., Potter, K. M., & Hipkins, V. D. (2016). Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation. Public Library of Science One, 11, e0151811. https://doi.org/10.1371/journal.pone.0151811
  • Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456, 109671. https://doi.org/10.1016/j.ecolmodel.2021.109671
  • Simões, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L., & Cobos, M. E. (2020). General theory and good practices in ecological niche modeling: A basic guide. Biodiversity Informatics, 15, 67–68. https://doi.org/10.17161/bi.v15i2.13376
  • Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. Public Library of Science One, 8, e55158. https://doi.org/10.1371/journal.pone.0055158
  • Title, P. O., & Bemmels, J. B. (2018). ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, 291–307. https://doi.org/10.1111/ecog.02880
  • Trejo, I., & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063–2084. https://doi.org/10.1023/A:1020876316013
  • Velasco, J. A., & González-Salazar, C. (2019). Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics, 51, 25–32. https://doi.org/10.1016/j.ecoinf.2019.02.005
  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution; International Journal of Organic Evolution, 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
  • Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342. https://doi.org/10.1890/10-1171.1
  • Yepez, E. A., & Williams, D. G. (2009). Precipitation pulses and ecosystem carbon and water exchange in arid and semi-arid environments. In E. De la Barrera &W. K. Smith (Eds.), Perspectives in biophysical plant ecophysiology: A tribute to Park S. Nobel (pp. 337–361). Universidad Nacional Autónoma de México.
  • Zappi, D. C. (1994). Pilosocereus (Cactaceae): The genus in Brazil. Succulent Plant Research, 3, 1–160.
  • Zhuo, Z., Xu, D., Pu, B., Wang, R., & Ye, M. (2020). Predicting distribution of Zanthoxylum bungeanum Maxim. in China. BMC Ecology, 20, 46. https://doi.org/10.1186/s12898-020-00314-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.