177
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Integrative taxonomy provides evidence for a cryptic lineage in the velvet worm Peripatopsis birgeri species complex (Onychophora: Peripatopsidae) in KwaZulu-Natal, South Africa

, , &

References

  • Ahrens, D., Fujisawa, T., Krammer, H. J., Eberle, J., Fabrizi, S., & Vogler, A. P. (2016). Rarity and incomplete taxon sampling in DNA-based species delimitation. Systematic Biology, 65, 478–494. https://doi.org/10.1093/sysbio/syw002
  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132
  • Álvarez-Presas, M., Carbayo, F., Rozas, J., & Riutort, M. (2011). Land planarians (Platyhelminthes) as a model organism for fine-scale phylogeographic studies: Understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. Journal of Evolutionary Biology, 24, 87–896. https://doi.org/10.1111/j.1420-9101.2010.02220.x
  • Astrin, J. J., Stüben, P. E., Misof, B., Wägele, J. W., Gimnich, F., Raupach, M. J., & Ahrens, D. (2012). Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-character- and tree-based species delineation. Molecular Phylogenetics and Evolution, 63, 1–14. https://doi.org/10.1016/j.ympev.2011.11.018
  • Barnes, A., & Daniels, S. R. (2019). On the importance of fine-scale sampling in detecting alpha taxonomic diversity among saproxylic invertebrates: A velvet worm (Onychophora: Opisthopatus amaxhosa) template. Zoologica Scripta, 48, 243–262. https://doi.org/10.1111/zsc.12338
  • Barnes, A., & Daniels, S. R. (2022). Refining species boundaries among velvet worms (Onychophora, Peripatopsidae), with the description of two new species of Opisthopatus from South Africa. Invertebrate Biology, 141, e12368 (1–17). https://doi.org/10.1111/ivb.12368
  • Barnes, A., Reiss, T., & Daniels, S. R. (2020). Systematics of the Peripatopsis clavigera species complex (Onychophora: Peripatopsidae) reveals cryptic cladogenic patterning, with the description of five new species. Invertebrate Systematics, 34, 569–590. https://doi.org/10.1071/IS19071
  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004
  • Bouchenak-Khelladi, Y., & Linder, H. P. (2017). Frequent and parallel habitat transitions as drivers of unbounded in the Cape Flora. Evolution; International Journal of Organic Evolution, 71, 2548–2561. https://doi.org/10.1111/evo.13364
  • Busschau, T., Conradie, W., & Daniels, S. R. (2019). Evidence for cryptic diversification in a rupicolous forest-dwelling gecko (Gekkonidae: Afroedura pondolia) from a biodiversity hotspot. Molecular Phylogenetics and Evolution, 139, 106549. https://doi.org/10.1016/j.ympev.2019.106549
  • Busschau, T., Conradie, W., & Daniels, S. R. (2021). One species hide many: Molecular and morphological evidence for cryptic speciation in a thread snake (Leptotyphlopidae: Leptotyphlops sylvicolus Broadley & Wallach, 1997). Journal of Zoological Systematics and Evolutionary Research, 59, 195–221. https://doi.org/10.1111/jzs.12401
  • Busschau, T., Jordaan, A., Conradie, W., & Daniels, S. R. (2022). Pseudocongruent phylogeography reflects unique responses to environmental perturbations in a biodiversity hotspot. Journal of Biogeography, 49, 445–459. https://doi.org/10.1111/jbi.14334
  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  • Costa, C. S., Junior, A. C., & Baptista, R. L. C. (2009). Brazilian species of Onychophora with notes on their taxonomy and distribution. Zoologia (Curitiba), 26, 553–561. https://doi.org/10.1590/S1984-46702009005000004
  • Cowling, R. M., Procheş, S., & Partridge, T. C. (2009). Explaining the uniqueness of the cape flora: Incorporating geomorphic evolution as a factor for explaining its diversification. Molecular Phylogenetics and Evolution, 51, 64–74. https://doi.org/10.1016/j.ympev.2008.05.034
  • Daniels, S. R., Dambire, C., Klaus, S., & Sharma, P. P. (2016). Unmasking alpha diversity, cladogenesis and biogeographical patterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species. Cladistics : The International Journal of the Willi Hennig Society, 32, 506–537. https://doi.org/10.1111/cla.12154
  • Daniels, S. R., Dreyer, M., & Sharma, P. P. (2017). Contrasting the population genetic structure of two velvet worm taxa (Onychophora: Peripatopsidae: Peripatopsis) in forest fragments along the south-eastern Cape, South Africa. Invertebrate Systematics, 31, 781–796. https://doi.org/10.1071/IS16085
  • Daniels, S. R., McDonald, D. E., & Picker, M. D. (2013). Evolutionary insight into the Peripatopsis balfouri sensu lato species complex (Onychophora: Peripatopsidae) reveals novel lineages and zoogeographic patterning. Zoologica Scripta, 42, n/a–n/a. https://doi.org/10.1111/zsc.12025
  • Daniels, S. R., Picker, M., Cowlin, R., & Hamer, M. (2009). Unravelling evolutionary lineages among South African velvet worms (Onychophora: Peripatopsis) provides evidence for widespread cryptic speciation. Biological Journal of the Linnean Society, 97, 200–216. https://doi.org/10.1111/j.1095-8312.2009.01205.x
  • Daniels, S. R., & Ruhberg, H. (2010). Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): Evidence for cryptic speciation. Journal of Zoology, 282, 171–179. https://doi.org/10.1111/j1469-7998.2010.00722.x
  • Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x
  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214
  • Excoffier, L., & Lischer, H. (2010). Arlequin Suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Ecology, 3, 294–299. https://doi.org/10.1371/journal.pone.0013102
  • Frigola, A., Prange, M., Schulz, M. (2018). Boundary conditions for the Middle Miocene Climate transition: Boundary conditions and CCSM3 output data. Pangea, https://doi.org/10.1594/PANGAEA.888504
  • Fu, Y. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925. https://doi.org/10.1093/genetics/147.2.915
  • Giribet, G., Buckman-Young, R. S., Costa, C. S., Baker, C. M., Benavides, L. R., Branstetter, M. G., Daniels, S. R., & Pinto-da-Rocha, R. (2018). The ‘Peripatos’ in Eurogondwana? – Lack of evidence that south-east Asian onychophorans walked through Europe. Invertebrate Systematics, 32, 842–865. https://doi.org/10.1071/IS18007
  • Giribet, G., Carranza, S., Baguñà, J., Riutort, M., & Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution, 13, 76–84. https://doi.org/10.1093/oxfordjournals.molbev.a025573
  • Hamer, M. L., Samways, M. J., & Ruhberg, H. (1997). A review of the Onychophora of South Africa, with discussion of their conservation. Annals of the Natal Museum, 38, 283–312.
  • Hamilton, C. A., Hendrixson, B. E., Brewer, M. S., & Bond, J. E. (2014). An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the north American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution, 71, . 9–93. https://doi.org/10.1016/j.ympev.2013.11.007
  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
  • Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580. https://doi.org/10.1093/molbev/msp274
  • Hévin, N. M. C., Hansen, S., Addison, P., Benoit, L., Kergoat, G. J., & Haran, J. (2022). Late Cenozoic environmental changes drove the diversification of a weevil genus endemic to the Cape Floristic Region. Zoologica Scripta, 51, 724–740. https://doi.org/10.1111/zsc.12563
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276
  • Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modelling of species niches and distributions. Methods in Ecology and Evolution, 12, 1602–1608. https://doi.org/10.1111/2041–210X.13628
  • Knight, J., & Grab, S. (2015). The Drakensberg Escarpment: Mountain processes at the edge. World Geomorphological Landscapes., 47–55.
  • Leray, M., Yang, J., Meyer, C., Mills, S., Agudelo, N., Ranwez, V., Boehm, J., & Machida, R. (2013). A new versatile primer set targeting a short fragment of the mitochondrial CO1 region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10, 34. https://doi.org/10.1186/1742-9994-10-34
  • Luo, A., Ling, C., Ho, S., & Zhu, C. (2018). Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology, 67, 830–846. https://doi.org/10.1093/sysbio/syy011
  • McDonald, D. E., & Daniels, S. R. (2012). Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forests in the Western Cape, South Africa. Journal of Evolutionary Biology, 25, 824–835. https://doi.org/10.1111/j.1420-9101.2012.02482.x
  • McDonald, D. E., Ruhberg, H., & Daniels, S. R. (2012). Two new Peripatopsis species (Onychophora: Peripatopsidae) from the Western Cape province, South Africa.Zootaxa, 3380, 55–68. https://doi.org/10.11646/zootaxa.3380.1.4
  • Miller, M. A., Pfeiffer, W., Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010. 1––8.
  • Mucina, L., Rutherford, M. C., Palmer, A. R., Milton, S. J., Scott, L., Lloyd, J. W., Van der Merwe, B., Hoare, D. B., Bezuidenhout, H., Vlok, J. H., & Euston-Brown, D. I. (2006). Nama-Karoo biome. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia, 19, 324–347.
  • Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., & Giribet, G. (2014). A living fossil tale of Pangaean Biogeography. Proceedings of the Royal Society B: Biological Sciences, 281, 20132648. https://doi.org/10.1098/rspb.2013.2648
  • Myburgh, A. M., & Daniels, S. R. (2015). Exploring the impact of habitat size on phylogeographic patterning in the Overberg velvet worm Peripatopsis overbergiensis (Onychophora: Peripatopsidae). The Journal of Heredity, 106, 296–305. https://doi.org/10.1093/jhered/esv014
  • Myburgh, A. M., & Daniels, S. R. (2022). Between the Cape Fold Mountains and the deep blue: Comparative phylogeography of selected codistributed ectotherms reveals asynchronous cladogenesis. Evolutionary Applications, 15, 1967–1987. https://dio:10/1111/eva.13493 https://doi.org/10.1111/eva.13493
  • Mynhardt, S., Maree, S., Pelser, I., Bennett, N. C., Bronner, G. N., Wilson, J. W., & Bloomer, P. (2015). Phylogeography of a morphologically cryptic golden mole assemblage from south-eastern Africa. Plos One, 10, e0144995. https://doi.org/10.1371/journal.pone.0144995
  • Naimi, B., Hamm, N. S. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional stability a problem for species distribution modelling? Ecography, 37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.0025x
  • Nixon, K. C., & Wheeler, Q. D. (1990). An amplification of the phylogenetic species concept. Cladistics, 6, 211–223. https://doi.org/10.1111/j.1096-0031.1990.tb00541.x
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231–259. odel.2005.03.026 https://doi.org/10.1016/j.ecolm
  • Posada, D., & Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14, 817–818. https://doi.org/10.1093/bioinformatics/14.9.817
  • Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: Assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
  • Puillandre, N., Modica, M. V., Zhang, Y., Sirovich, L., Boisselier, M.-C., Cruaud, C., Holford, M., & Samadi, S. (2012). Large-scale species delimitation method for hyper-diverse groups. Molecular Ecology, 21, 2671–2691. https://doi.org/10.1111/j.1365-294X.2012.05559.x
  • Reid, A. L. (1996). Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebrate Systematics, 10, 663–936. https://doi.org/10.1071/IT9960663
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruhberg, H. (1985). Die Peripatopsidae (Onychophora). Systematik, Okologie, Chorologie und phylogenetische Aspekte. Zoologica, 137, 1–183.
  • Ruhberg, H., & Daniels, S. R. (2013). Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi sensu lato (Onychophora: Peripatopsidae). Invertebrate Systematics, 27, 131–145. https://doi.org/10.1071/IS12069
  • Ruhberg, H., & Hamer, M. (2005). A new species of Opisthopatus (Onychophora: Peripatopsidae) from KwaZulu-Natal, South Africa. Zootaxa, 1039, 27–38. https://doi.org/10.11646/ZOOTAXA.1039.1.3
  • Sato, S., Buckman-Young, R. S., Harvey, M. S., & Giribet, G. (2018). Cryptic speciation in a biodiversity hotspot: Multilocus molecular data reveal new velvet worm species from Western Australia (Onychophora: Peripatopsidae: Kumbadjena). Invertebrate Systematics, 32, 1249–1264. https://doi.org/10.1071/IS18024
  • Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771. https://doi.org/10.1080/10635150802429642
  • Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America, 114, 1607–1612. https://doi.org/10.1073/pnas.1607921114
  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. https://doi.org/10.1093/nar/25.24.4876
  • Tolley, K. A., Bowie, R. C., Measey, J. G., Price, B. W., & Forest, F. (2014). The shifting landscape of genes since the Pliocene: Terrestrial phylogeography in the Greater Cape Floristic Region. In N. Allsopp, J. F. Colville, & G. A. Verboom (Eds.), Fynbos: Ecology, evolution and conservation of a megadiverse region (pp. 142–163). Oxford University Press.
  • Tolley, K. A., Tilbury, C. R., Measey, G. J., Menegon, M., Branch, W. R., & Matthee, C. A. (2011). Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. Journal of Biogeography, 38, 1748–1760. https://doi.org/10.1111/j.1365-2699.2011.02529.x
  • Wei, T., & Simko, V. (2021). R package 'corrplot’: Visualization of a correlation matrix. [ Computer Program]. github.com/taiyun/corrplot
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 mya to present. Science, 292, 686–693. https://doi.org/10.1126/science.10594
  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.