150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A population genetic-level approach to endemic species of Oxalis section Palmatifoliae (Oxalidaceae) in Patagonia

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Araujo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x
  • Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11, 854–866. https://doi.org/10.3390/e11040854
  • Chacón, J., de Assis, M. C., Meerow, A. W., & Renner, S. S. (2012). From East Gondwana to Central America: Historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 39, 1806–1818. https://doi.org/10.1111/j.1365-2699.2012.02749.x
  • Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L., & Cocucci, A. (2010). Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: The phylogeography of Calceolaria polyrhiza. Journal of Biogeography, 37, 1463–1477. https://doi.org/10.1111/j.1365-2699.2010.02307.x
  • Cristian, M., Andrea, B., Anahí, C., Maria, E., Iglesias, R., Chan, L. M., Johnson, L. A., & Noemí, A. (2018). Echoes of the whispering land : Interacting roles of vicariance and selection in shaping the evolutionary divergence of two Calceolaria (Calceolariaceae) species from Patagonia and Malvinas/Falkland Islands. Evolutionary Ecology, 32, 287–314. https://doi.org/10.1007/s10682-018-9938-3
  • Denton, M. F. (1973). A monograph of Oxalis section Ionoxalis (Oxalidaceae) in North America. Publ. Mus., Michigan State University Biological Series, 4, 455–615.
  • Donoghue, M. J. (2009). A phylogenetic perspective on the distribution of plant diversity. In the. Light of Evolution, 2, 247–262. https://doi.org/10.17226/12501
  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11–15.
  • Ehrich, D. (2006). AFLPDAT: A collection of R functions for convenient handling of AFLP data. Molecular Ecology Notes, 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x
  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A Simulation Study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2
  • Fick, S. E. & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
  • Francis, R. M. (2017). Pophelper: An R package and web app to analyse and visualise population structure. Molecular Ecology Resources, 17, 27–32. https://doi.org/10.1111/1755-0998.12509
  • Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to conservation genetics. Cambridge University Press. https://doi.org/10.1017/CBO9780511808999
  • Gardner, A. G., Vaio, M., Guerra, M., & Emshwiller, E. (2012). Diversification of the American bulb-bearing Oxalis (Oxalidaceae): Dispersal to North America and modification of the tristylous breeding system. American Journal of Botany, 99, 152–164. https://doi.org/10.3732/ajb.1100152
  • Gebregziabher, A. (2004). Systematic significance of bulb morphology and anatomy in SA members of Oxalis [MSc thesis]. University of Stellenbosch.
  • Ginestet, C. (2011). ggplot2: Elegant graphics for data analysis. Journal of the Royal Statistical Society Series A: Statistics in Society, 174, 245–246. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
  • Heibl, C., & Renner, S. S. (2012). Distribution models and a dated phylogeny for chilean oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation. Systematic Biology, 61, 823–834. https://doi.org/10.1093/sysbio/sys034
  • Huh, M. K., & Choi, B. K. (2014). Genetic diversity and phenetic relationships of genus Oxalis in Korea using random amplified polymorphic DNA (RAPD) markers. Journal of Life Science, 24, 707–712. https://doi.org/10.5352/JLS.2014.24.7.707
  • Iglesias, A., Artabe, A. E., & Morel, E. M. (2011). The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnean Society, 103, 409–422. https://doi.org/10.1111/j.1095-8312.2011.01657.x
  • Keller, B., Ganz, R., Mora-Carrera, E., Nowak, M. D., Theodoridis, S., Koutroumpa, K., & Conti, E. (2021). Asymmetries of reproductive isolation are reflected in directionalities of hybridization: integrative evidence on the complexity of species boundaries. The New Phytologist, 229, 1795–1809. https://doi.org/10.1111/nph.16849
  • Kleinert, K., & Strecker, M. R. (2001). Climate change in response to orographic barrier uplift: Paleosol and stable isotope evidence from the late Neogene Santa Maria Basin, northwestern Argentina. Geological Society of America Bulletin, 113, 728–742. https://doi.org/10.1130/0016-7606(2001)113<0728:CCIRTO>2.0.CO;2
  • Jakob, S. S., & Blattner, F. R. (2006). A chloroplast genealogy of Hordeum (Poaceae): Long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molecular Biology and Evolution, 23, 1602–1612. https://doi.org/10.1093/molbev/msl018
  • Jakob, S. S., Heibl, C., Rödder, D., & Blattner, F. R. (2010). Population demography influences climatic niche evolution: Evidence from diploid American Hordeum species (Poaceae). Molecular Ecology, 19, 1423–1438. https://doi.org/10.1111/j.1365-294X.2010.04582.x
  • Jakob, S. S., Martinez-Meyer, E., & Blattner, F. R. (2009). Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molecular Biology and Evolution, 26, 907–923. https://doi.org/10.1093/molbev/msp012
  • Knuth, R. (1930). Oxalidaceae. In A. Engler (Ed.), Das Pflanzenreich (IV 130, Leipzig, 481 pp.).
  • Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A., & Davis, C. C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). The New Phytologist, 210, 1430–1442. https://doi.org/10.1111/nph.13920
  • López, A. (2017). Oxalidaceae. In F. O. Zuloaga (Ed.), Flora Argentina (pp. 225–277). Estudio Sigma.
  • López, A., & Bonasora, M. G. (2017). Phylogeography, genetic diversity and population structure in a Patagonian endemic plant. AoB PLANTS, 9, plx017. https://doi.org/10.1093/aobpla/plx017
  • López, A., Panseri, A. F., & Urtubey, E. (2013). Revision of Oxalis section Palmatifoliae DC. (Oxalidaceae). Phytotaxa, 138, 1–14. https://doi.org/10.11646/phytotaxa.138.1.1
  • Lourteig, A. (2000). Oxalis L. subgenero Monoxalis (Small) Lourteig, Oxalis y Trifidus Lourteig. Bradea, 7, 201–262.
  • Moré, M., Cocucci, A. A., Sérsic, A. N., & Barboza, G. E. (2015). Phylogeny and floral trait evolution in Jaborosa (Solanaceae). Taxon, 64, 523–534. https://doi.org/10.12705/643.8
  • Morello, S., & Sede, S. M. (2016). Genetic admixture and lineage separation in a southern Andean plant. AoB PLANTS, 8. https://doi.org/10.1093/aobpla/plw034
  • Nicola, M. V., Johnson, L. A., & Pozner, R. (2014). Geographic variation amongst closely related, highly variable species with a wide distribution range: The South Andean- Patagonian Nassauvia subgenus Strongyloma (Asteraceae, Nassauvieae). Syst. Botany, 39, 331–348. https://doi.org/10.1600/036364414X677982
  • Nicola, M. V., Johnson, L. A., & Pozner, R. (2019). Unraveling patterns and processes of diversification in the South Andean-Patagonian Nassauvia subgenus Strongyloma (Asteraceae, Nassauvieae). Molecular Phylogenetics and Evolution, 136, 164–182. https://doi.org/10.1016/j.ympev.2019.03.004
  • Oberlander, K. C., Emshwiller, E., Bellstedt, D. U., & Dreyer, L. L. (2009). A model of bulb evolution in the eudicot genus Oxalis (Oxalidaceae). Molecular Phylogenetics and Evolution, 51, 54–63. https://doi.org/10.1016/j.ympev.2008.11.022
  • Oberlander, K. C., Dreyer, L. L., & Bellstedt, D. U. (2011). Molecular phylogenetics and origins of southern African Oxalis. TAXON, 60, 1667–1677. https://doi.org/10.1002/tax.606011
  • Oke, O. A., & Thompson, K. A. (2015). Distribution models for mountain plant species: The value of elevation. Ecological Modelling. 301, 72–77. https://doi.org/10.1016/j.ecolmodel.2015.01.019
  • Paradis, E. (2010). pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics (Oxford, England), 26, 419–420. https://doi.org/10.1093/bioinformatics/btp696
  • Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (Oxford, England), 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
  • Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  • Pfanzelt, S., Albach, D. C., & von Hagen, K. B. (2017). Tabula rasa in the Patagonian Channels? The phylogeography of Oreobolus obtusangulus (Cyperaceae). Molecular Ecology, 26, 4027–4044. https://doi.org/10.1111/mec.14156
  • Phillips, S. J., Dudik, M., Schapire, R. E. (2005). Maxent software for species distribution modeling. www.cs.princeton. edu/schapire/maxent
  • Ponce, J. F., Rabassa, J., Coronato, A., & Borromei, A. M. (2011). Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biological Journal of the Linnean Society, 103, 363–379. https://doi.org/10.1111/j.1095-8312.2011.01653.x
  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959. https://doi.org/10.1093/genetics/155.2.945
  • Rabassa, J., & Rabassa, J. (2008). Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In Late Cenozoic of Patagonia and Tierra del Fuego (vol. 11, pp 151–204). Elsevier, Developments in Quaternary Science.
  • RStudio Team. (2015). RStudio: Integrated development for R. RStudio, Inc.
  • Ruzzante, D. E., & Rabassa, J. (2011). Palaeogeography and palaeoclimatology of Patagonia: Effects on biodiversity. Biological Journal of the Linnean Society, 103, 221–228. https://doi.org/10.1111/j.1095-8312.2011.01693.x
  • Sang, T., Crawford, D. J., & Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84, 1120–1136. https://doi.org/10.2307/2446155
  • Sérsic, A. N., Cosacov, A., Cocucci, A. A., Johnson, L. A., Pozner, R., Avila, L. J., Sites, J. W., & Morando, M. (2011). Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biological Journal of the Linnean Society, 103, 475–494. https://doi.org/10.1111/j.1095-8312.2011.01656.x
  • Schlüter, P. M. & Harris, S. A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes, 6, 569–572. https://doi.org/10.1111/j.1471-8286.2006.01225.x
  • Schönswetter, P., & Tribsch, A. (2005). Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). TAXON, 54, 725–732. https://doi.org/10.2307/25065429
  • Sede, S. M., Nicola, M. V., Pozner, R., & Johnson, L. (2012). Phylogeography and palaeodistribution modelling in the Patagonian steppe: The case of Mulinum spinosum (Apiaceae). Journal of Biogeography, 39, 1041–1057. https://doi.org/10.1111/j.1365-2699.2011.02662.x
  • Tosto, D. S., & Hopp, H. E. (2000). Suitability of AFLP markers for the study of genomic relationships within the Oxalis tuberosa alliance. Plant Systematics and Evolution, 223, 201–209. https://doi.org/10.1007/BF00985279
  • Tremetsberger, K., Urtubey, E., Terrab, A., Baeza, C. M., Ortiz, M. Á., Talavera, M., König, C., Temsch, E. M., Kohl, G., Talavera, S., & Stuessy, T. F. (2009). Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Molecular Ecology, 18, 3668–3682. https://doi.org/10.1111/j.1365-294X.2009.04298.x
  • Wei, T., Simko, V. (2017). Package ‘corrplot: Visualization of a correlation matrix’ (v.0.84). https://CRAN.R-project.org/package=corrplot

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.