53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multiple sources of evidence unravel a complex taxonomic history: the new genus Leonoria of the Spermacoce clade (Spermacoceae-Rubiaceae)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Accorsi, W. R. M. (1947). III - A ocorrência das células anexas dos estômatos na familia Rubiaceae. Anais da Escola Superior de Agricultura Luiz de Queiroz, 4, 411–436. https://doi.org/10.1590/S0071-12761944000100008
  • Alexandrino, C. R., Moraes, T. M. S., & da Cunha, M. (2011). Micromorfologia e anatomia foliar de espécies de Rubiaceae do Parque Nacional de Itatiaia-RJ. Floresta e Ambiente, 18, 275–288. https://doi.org/10.4322/floram.2011.048
  • Alfaro, M. E., Zoller, S., & Lutzoni, F. (2003). Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution, 20, 255–266. https://doi.org/10.1093/molbev/msg028
  • Arruda, R. C. O., Gomes, D. M. S., Azevedo, A. C., Magalhães, M. L., & Gomes, M. (2010). Anatomia e micromorfologia foliar de seis espécies de Posoqueria Aublet (Rubiaceae). Rodriguésia, 61, 505–518. https://doi.org/10.1590/2175-7860201061311
  • Bacigalupo, N. M., & Cabral, E. L. (1999). Revisión de las especies americanas del género Diodia (Rubiaceae, Spermacoceae). Darwiniana, 37, 153–165.
  • Barker, F. K., & Lutzoni, F. M. (2002). The utility of the incongruence length difference test. Systematic Biology, 51, 625–637. https://doi.org/10.1080/10635150290102302
  • Cabral, E. L. (1991). Rehabilitación del género Galianthe (Rubiaceae). Boletín de la Sociedad Argentina de Botánica, 27, 235–249.
  • Cabral, E. L. (2009). Revisión sinóptica de Galianthe subgen. Galianthe (Rubiaceae: Spermacoceae), con una sección nueva. Annals of the Missouri Botanical Garden, 96, 27–60. https://doi.org/10.3417/2006193
  • Cabral, E. L., & Bacigalupo, N. M. (1997). Revisión del género Galianthe Subgen. Ebelia stat. nov. (Rubiaceae: Spermacoceae). Annals of the Missouri Botanical Garden, 84, 857–877. https://doi.org/10.2307/2992031
  • Cabral, E. L., & Bacigalupo, N. M. (2001a). Scandentia, nuevo género de Rubiaceae-Spermacoceae. Darwiniana, 39, 29–41. https://doi.org/10.14522/darwiniana.2014.391-2.197
  • Cabral, E. L., & Bacigalupo, N. M. (2001b). Denscantia, nuevo nombre en reemplazo de Scandentia (Rubiaceae-Spermacoceae). Darwiniana, 39, 353.
  • Cardoso, D., Moonlight, P. W., Ramos, G., Oatley, G., Dudley, C., Gagnon, E., Queiroz, L. P., Pennington, R. T., & Särkinen, T. E. (2021). Defining biologically meaningful biomes through floristic, functional, and phylogenetic data. Frontiers in Ecology and Evolution, 9, 723558. https://doi.org/10.3389/fevo.2021.723558
  • Carmo, J. A. M., Reginato, M., Florentín, J., Nuñez Florentin, M., Salas, S., & Simões, A. (2022). One more piece to the puzzle: Diadorimia, a new monotypic genus in the Spermacoceae (Rubiaceae), endemic to the campo rupestre of Minas Gerais, southeastern Brazil. TAXON, 71, 396–419. https://doi.org/10.1002/tax.12643
  • Conceição, L. O., & Aoyama, E. M. (2015). Morfoanatomia e histoquímica foliar de Diodella teres (Walter) Small (Rubiaceae). Enciclopédia Biosfera, 11, 2268–2277. https://doi.org/10.18677/Enciclopedia_Biosfera_2015_197
  • Costa, V. B. S., Almeida, G. M. A., Chagas, M. G. S., & Pimentel, R. M. M. (2012). Indicadores anatômicos foliares como estratégias de defesa contra elevada incidência luminosa. Revista Brasileira de Geografia Física, 4, 349–364. https://doi.org/10.26848/rbgf.v4i2.232733
  • Davis, A. P., Govaerts, R., Bridson, D. M., Ruhsam, M., Moat, J., & Brummitt, N. A. (2009). A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Annals of the Missouri Botanical Garden, 96, 68–78. https://doi.org/10.3417/2006205
  • Delprete, P. G. (2007). New combinations and new synonymies in the genus Spermacoce (Rubiaceae) for the Flora of Goiás and Tocantins (Brazil) and the Flora of The Guianas. Journal of the Botanical Research Institute of Texas, 1, 1023–1030.
  • Demarco, D. (2017). Histochemical analysis of plant secretory structures. In Methods in molecular biology (Vol. 1560, pp. 313–330). Springer. https://doi.org/10.1007/978-1-4939-6788-9_24
  • Dessein, S. (2003). Systematic studies in the Spermacoceae (Rubiaceae) e [Unpublished doctoral dissertation]. Katholieke Universiteit Leuven.
  • Dessein, S., Ntore, S., Robbrecht, E., & Smets, E. (2003). Pollen and seeds reveal that Spermacoce thymoidea s.l. (African Rubiaceae, Spermacoceae) represents three endemic or disjunct species from the Zambezian high plateaus. Systematic Botany, 28, 130–144. https://doi.org/10.1043/0363-6445-28.1.130
  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, Botanical Society of America, 19, 11–15.
  • Erdtman, G. (1966). An introduction to palynology. vol. 1, Pollen morphology and plant taxonomy; Angiosperms. Hafner.
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
  • Florentín, J. E., Cabaña Fader, A. A., Salas, R. M., Janssens, S., Dessein, S., & Cabral, E. L. (2017). Morphological and molecular data confirm the transfer of homostylous species in the typically distylous genus Galianthe (Rubiaceae), and the description of the new species Galianthe vasquezii from Peru and Colombia. PeerJ. 5, e4012. https://doi.org/10.7717/peerj.4012
  • Gaberščik, A., Grašič, M., Vogel-Mikuš, K., Germ, M., & Golob, A. (2020). Water shortage strongly alters formation of calcium oxalate druse crystals and leaf traits in Fagopyrum esculentum. Plants, 9, 917. https://doi.org/10.3390/plants9070917
  • Gonzalez, A. M., & Cristóbal, C. L. (1997). Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bonplandia, 9, 287–294. https://doi.org/10.30972/bon.93-41497
  • Govaerts, R. (1996). World checklist of seed plants (Vol. 2, part 1). Continental Publishing.
  • Groeninckx, I., Dessein, S., Ochoterena, H., Persson, C., Motley, T. J., Kårehed, J., Bremer, B., Huysmans, S., & Smets, E. (2009). Phylogeny of the herbaceous tribe Spermacoceae (Rubiaceae) based on plastid DNA data. Annals of the Missouri Botanical Garden, 96, 109–132. https://doi.org/10.3417/2006201
  • Gusmão, E. D., Souza, J. P., Santan Silva, I. M., & Silva, L. B. (1992). Estudo anátomo-morfológico de dicotiledôneas das dunas de Salvador-Bahia. Borreria cymosa Cham. et Schl. e Chiococca brachiata R. et P. (Rubiaceae). Acta Botanica Brasilica, 6, 79–98. https://doi.org/10.1590/S0102-33061992000100007
  • Hijmans, R. (2023). raster: Geographic data analysis and modeling. R package version 3.6-20, https://CRAN.R-project.org/package=raster.
  • Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  • Humphreys, A. M., & Linder, H. P. (2009). Concept versus data in delimitation of plant genera. Taxon, 58, 1054–1074. https://doi.org/10.1002/tax.584002
  • Kahle, D., & Wickham, H. (2013). ggmap: Spatial visualization with ggplot2. The R Journal, 5, 144–161. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf https://doi.org/10.32614/RJ-2013-014
  • Kårehed, J., Groeninckx, I., Dessein, S., Motley, T. J., & Bremer, B. (2008). The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of the Rubiaceae tribe Spermacoceae. Molecular Phylogenetics and Evolution, 49, 843–866. https://doi.org/10.1016/j.ympev.2008.09.025
  • Janssens, S., Geuten, K., Yuan, Y. M., Song, Y., Küpfer, P., & Smets, E. (2006). Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences. Systematic Botany, 31, 171–180. https://doi.org/10.1600/036364406775971796
  • Johansen, D. A. (1940). Plant Microtechnique. McGraw-Hill Book Company.
  • Johnson, L. A., & Soltis, S. E. (1998). Assessing congruence: Empirical examples from molecular data. In D. E. Soltis, P. S. Soltis & J. J. Doyle (Eds.), Molecular systematics of plants 2: DNA sequencing (pp. 297–348) Kluwer Academic Publishing.
  • Judkevich, M. D., González, A. M., & Salas, R. M. (2020). A new species of Randia (Rubiaceae) and the taxonomic significance of foliar anatomy in the species of Randia of the southern cone of America. Systematic Botany, 45, 607–619. https://doi.org/10.1600/036364420X15935295449916
  • Judkevich, M. D., Salas, R. M., & González, A. M. (2015). Revisión de Randia (Rubiaceae) en Argentina, taxonomía y morfoanatomía. Boletín de la Sociedad Argentina de Botánica, 50, 607–625. https://doi.org/10.31055/1851.2372.v50.n4.12920
  • Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics, 30, 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  • Luque, R., Sousa, H. C., & Kraus, J. E. (1996). Métodos de coloração de Roeser (1972) – modificado – e Kropp (1972) visando a substituição do azul de Astra por azul de alcião 8 GS ou 8 GX. Acta Botanica Brasilica, 10, 199–212. https://doi.org/10.1590/S0102-33061996000200001
  • Martínez-Cabrera, D., Terrazas, T., & Ochoterena, H. (2009). Foliar and petiole anatomy of tribe hamelieae and other Rubiaceae. Annals of the Missouri Botanical Garden, 96, 133–145. https://doi.org/10.3417/2006196
  • Metcalfe, C. R., & Chalk, L. (1979). Anatomy of the dicotyledons: Systematic anatomy of the leaf and stem, vol. 1. Clarendon Press.
  • Miguel, M. L., & Cabral, E. L. (2013). Borreria krapocarmeniana, a new cryptic species recovered through taxonomic analyses of Borreria scabiosoides and Borreria linoides (Spermacoceae, Rubiaceae). Systematic Botany, 38, 769–781. https://doi.org/10.1600/036364413X670368
  • Miguel, L. M., Sobrado, S. V., Janssens, S., Dessein, S., & Cabral, E. L. (2018). The monotypic Brazilian genus Diacrodon is a synonym of Borreria (Spermacoceae, Rubiaceae): Morphological and molecular evidences. Anais da Academia Brasileira de Ciencias, 90, 1397–1415. https://doi.org/10.1590/0001-3765201820170314
  • Miller, M. A., Pfeiffer, W., Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), IEEE, New Orleans, LA, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  • Mara Mussury, R., Valdivina Pereira, Z., & De Paula Quintão Sc, S. (2012). Comparison of leaf morphoanatomy of Diodella radula (Willd. & Hoffmanns. Ex Roem. & Schult.) Delprete and Diodella teres (Walter) Small (Rubiaceae). International Journal of Plant Research, 2, 41–45. https://doi.org/10.5923/j.plant.20120202.08
  • Neupane, S., Dessein, S., Wikström, N., Lewis, P. O., Long, C., Bremer, B., & Motley, T. J. (2015). The Hedyotis-Oldenlandia complex (Rubiaceae: Spermacoceae) in Asia and the Pacific: Phylogeny revisited with new generic delimitations. TAXON, 64, 299–322. https://doi.org/10.12705/642.8
  • Nuñez-Florentin, M., Florentín, J. E., Salas, R. M., Dessein, S., & Janssens, S. (2023). Multi-loci phylogeny and morphological evidence support the recognition of Januaria (Spermacoceae, Rubiaceae), a new monospecific genus endemic to the North of Minas Gerais (Brazil). Anais da Academia Brasileira de Ciências, 95, e20211601. https://doi.org/10.1590/0001-3765202320211601
  • Nuñez Florentin, M., Salas, R. M., Carmo, J. A. M., Cabral, E., Dessein, S., & Janssens, S. B. (2022). Paganuccia icatuensis (Rubiaceae), a new genus and species from Bahia, Brazil, with a key to all the genera of the tribe Spermacoceae in the Americas. Taxon, 71, 630–649. https://doi.org/10.1002/tax.12651
  • Nuñez-Florentin, M., Salas, R. M., Janssens, S. B., Dessein, S., & Cardoso, D. (2021). Molecular-based phylogenetic placement and revision of Micrasepalum (Spermacoceae-Rubiaceae). Taxon, 70, 1300–1316. https://doi.org/10.1002/tax.12593
  • O’Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series. 691 U.S. Geological Survey. https://pubs.usgs.gov/ds/691/ds691.pdf.
  • Oliveira-Filho, A. T., Cardoso, D., Schrire, B. D., Lewis, G. P., Pennington, R. T., Brummer, T. J., Rotella, J., & Lavin, M. (2013). Stability structures tropical woody plant diversity more than seasonality: Insights into the ecology of high legume-succulent-plant biodiversity. South African Journal of Botany, 89, 42–57. https://doi.org/10.1016/j.sajb.2013.06.010
  • Pire, S. M., & Cabral, E. L. (1992). El valor del polen en la revalidación de Galianthe (Spermacoceae-Rubiaceae). Darwiniana, 31, 1–10.
  • Posada, D. (2008). JModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256. https://doi.org/10.1093/molbev/msn083
  • Punt, W. S., Hoen, P. P., Blackmore, S., Nilsson, S., & Thomas, L. E. A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143, 1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008
  • Rambaut, A., Suchard, M. A., Xie, D., Drummond, A. J. (2014). Tracer, version 1.6. http://beast.bio.ed.ac.uk/Tracer.
  • Rasband, W. S. (2020). Image J, version 1.51k. Bethesda, MD: U.S. National Institutes of Health. Retrieved November, 2022, from http://imagej.nih.gov/ij/.
  • Robbrecht, E. (1988). Tropical woody Rubiaceae. Opera Botánica, 1, 1–176.
  • Romero, M. F., Salas, R. M., & González, A. M. (2019). Taxonomic and ecological implications of foliar morphoanatomy in Cephalanthus (Naucleeae, Rubiaceae). Systematic Botany, 44, 378–397. https://doi.org/10.1600/036364419X15562052252207
  • RStudio Team. (2022). RStudio [Version 2022.03.0 + 386 “Cherry Blossom” Release]. https://www.rstudio.com
  • Salas, R. M., & Cabral, E. L. (2010). Planaltina nuevo género de la tribu Spermacoceae (Rubiaceae), endémico del Planalto central de Brasil y una nueva especie del estado de Goiás, Brasil. Journal of the Botanical Research Institute of Texas, 4, 193–206.
  • Salas, R. M., Soto, D., & Cabral, E. L. (2011). Dos especies nuevas de Borreria (Rubiaceae), un nuevo registro de Declieuxia y observaciones taxonómicas. Brittonia, 63, 286–294. https://doi.org/10.1007/s12228-010-9160-2
  • Salas, R. M., & Cabral, E. L. (2012). Denscantia calcicola (Rubiaceae), a new species from limestone outcrops in the Brazilian caatinga. Systematic Botany, 37, 807–810. https://doi.org/10.1600/036364412X648742
  • Salas, R. M., & Cabral, E. L. (2014). Morfología polínica de Staelia s.l. (Rubiaceae). Boletín de la Sociedad Argentina de Botánica, 49, 51–65. https://doi.org/10.31055/1851.2372.v49.n1.7821
  • Salas, R. M., Cabral, E. L., Viana, P. L., Dessein, S., & Janssens, S. (2015). Carajasia (Rubiaceae), a new and endangered genus from Carajás mountain range, Pará, Brazil. Phytotaxa, 206, 14–29. https://doi.org/10.11646/phytotaxa.00.0.0
  • Segovia, R. A., Pennington, R. T., Baker, T. R., Coelho de Souza, F., Neves, D. M., Davis, C. C., Armesto, J. J., Olivera-Filho, A. T., & Dexter, K. G. (2020). Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6, eaaz5373. https://doi.org/10.1126/sciadv.aaz5373
  • Silva, T. R. S., Giulietti, A. M., Harley, R. M., Queiroz, L. P., & Franca, F. (2006). Flora of the State of Bahia: History and organization. In L. P. Queiroz, A. Rapini & A. M. Giulietti (Eds.), Towards greater knowledge of the Brazilian semiarid biodiversity (pp. 55–58). Ministério da Ciência e Tecnologia, Secretaria de Políticas e Programas de Pesquisa e Desenvolvimento.
  • Silva Zini, A., Martins, S., Toderke, M. L., & Godinho Temponi, L. (2016). Anatomia foliar de Rubiaceae ocorrentes em fragmento florestal urbano de Mata Atlântica, PR, Brasil. Hoehnea, 43, 173–182. https://doi.org/10.1590/2236-8906-59/2015
  • South, A. (2017). rnaturalearthdata: World vector map data from natural earth used in 'rnaturalearth’. R package version 0.1.0. https://CRAN.Rproject.org/package=rnaturalearthdata.
  • Souza, B. C., Oliveira, R. S., De Araújo, F. S., De Lima, A. L. A., & Rodal, M. J. N. (2015). Divergencias funcionais e estratégias de resistèçência á seca entre espécies decíduas e sempre verdes tropicais. Rodriguésia, 66, 21–32. https://doi.org/10.1590/2175-7860201566102
  • Souza Lima, M. P., Soares, A., Padovani Porto, J. M., Souza, F. S., Santos Carvalho, M., & Tavares Braga, F. (2020). Leaf anatomy of Rubiaceae species in a semiarid area of Brazil. Rodriguésia, 71, e01562018. https://doi.org/10.1590/2175-7860202071096
  • Souza Lima, M. P., Soares, A., Ribeiro de Sousa, J. L., Santos Carvalho, M., Padovani Porto, J. M., & Tavares Braga, F. (2018). Leaf architecture of Rubiaceae Juss. from caatinga vegetation in Brazil. Biota Neotropica, 19, e20170473. https://doi.org/10.1590/1676-0611-bn-2017-0473
  • Stearn, W. T. (1986). Botanical Latin. Ed. 3. David and Charles Publishers plc.
  • Suzuki, Y., Glazko, G. V., & Nei, M. (2002). Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America, 99, 16138–16143. https://doi.org/10.1073/pnas.212646199
  • Thiers, B. (2022). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Retrieved November, 2022, from http://sweetgum.nybg.org/science/ih.
  • Xu, Y.-D., Yuan, M. D., & Wang, R. (2021). Morphology and molecules support the new monotypic genus Parainvolucrella (Rubiaceae) from Asia. PhytoKeys, 180, 53–64. https://doi.org/10.3897/phytokeys.180.67624
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
  • Wiens, J. J. (1998). Combining data sets with different phylogenetic histories. Systematic Biology, 47, 568–581. https://doi.org/10.1080/106351598260581
  • Zarlavsky, G. E. (2014). Histología Vegetal: Técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos Aires.
  • Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10, 744–751. https://doi.org/10.1111/2041-210X.13152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.