43
Views
0
CrossRef citations to date
0
Altmetric
Comment

Polyploidy and genome evolution in the common cordgrass Spartina anglica: an enigmatic evolution of allopolyploidy

ORCID Icon & ORCID Icon

References

  • Abbott, R. J., & Forbes, D. G. (2002). Extinction of the Edinburgh lineage of the allopolyploid neospecies, Senecio cambrensis Rosser (Asteraceae). Heredity, 88, 267–269. https://doi.org/10.1038/sj.hdy.6800038
  • Adams, K. L., & Wendel, J. F. (2005). Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8, 135–141. https://doi.org/10.1016/j.pbi.2005.01.001
  • Ainouche, M., Chelaifa, H., Ferreira, J., Bellot, S., Ainouche, A., & Salmon, A. (2012). Erratum from-polyploid evolution in Spartina: Dealing with highly redundant hybrid genomes. In P. Soltis, & D. Soltis (Eds.), Polyploidy and genome evolution (pp. 225–243). Springer.
  • Ainouche, M. L., Baumel, A., & Salmon, A. (2004a). Spartina anglica Schreb. A natural model system for analyzing early evolutionary changes that affect allopolyploid genomes. Biological Journal of the Linnean Society, 82, 475–484. https://doi.org/10.1111/j.1095-8312.2004.00334.x
  • Ainouche, M. L., Baumel, A., Salmon, A., & Yannic, G. (2004b). Hybridization, polyploidy and speciation in Spartina Schreb (Poaceae). New Phytologist, 161, 165–172. https://doi.org/10.1046/j.1469-8137.2003.00926.x
  • Ainouche, M. L., Fortune, P. M., Salmon, A., Parisod, C., Grandbastien, M. A., Fukunaga, K., Ricou, M., & Misset, M. T. (2009). Hybridization, polyploidy and invasion: Lessons from Spartina (Poaceae). Biological Invasions, 11, 1159–1173. https://doi.org/10.1007/s10530-008-9383-2
  • Alix, K., Gérard, P. R., Schwarzacher, T., & Heslop-Harrison, J. S. (2017). Polyploidy and interspecific hybridization: Partners for adaptation, speciation and evolution in plants. Annals of Botany, 120, 183–194. https://doi.org/10.1093/aob/mcx079
  • An, S. U., Cho, H., Jung, U. J., Kim, B., Lee, H., & Hyun, J. H. (2020). Invasive Spartina anglica greatly alters the rates and pathways of organic carbon oxidation and associated microbial communities in an intertidal wetland of the Han River Estuary, Yellow Sea. Frontiers in Marine Science, 7, 59. https://doi.org/10.3389/fmars.2020.00059
  • Aversano, R., Ercolano, M. R., Caruso, I., Fasano, C., Rosellini, D., & Carputo, D. (2012). Molecular tools for exploring polyploid genomes in plants. International Journal of Molecular Sciences, 13, 10316–10335. https://doi.org/10.3390/ijms130810316
  • Ayres, D. R., Grotkopp, E., Zaremba, K., Sloop, C. M., Blum, M. J., Bailey, J. P., Anttila, C. K., & Strong, D. R. (2008). Hybridization between invasive Spartina densiflora (Poaceae) and native S. foliosa in San Francisco Bay, California, USA. American Journal of Botany, 95, 713–719. https://doi.org/10.3732/ajb.2007358
  • Ayres, D. R., & Strong, D. R. (2001). Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. American Journal of Botany, 88, 1863–1867.
  • Baumel, A., Ainouche, M. L., Bayer, R. J., Ainouche, A. K., & Misset, M. T. (2002a). Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Molecular Phylogenetics and Evolution, 22, 303–314. https://doi.org/10.1006/mpev.2001.1064
  • Baumel, A., Ainouche, M. L., Kalendar, R., & Schulman, A. H. (2002b). Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Molecular Biology and Evolution, 19, 1218–1227. https://doi.org/10.1093/oxfordjournals.molbev.a004182
  • Baumel, A., Ainouche, M. L., & Levasseur, J. E. (2001). Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Molecular Ecology, 10, 1689–1701. https://doi.org/10.1046/j.1365-294x.2001.01299.x
  • Baumel, A., Ainouche, M. L., Misset, M. T., Gourret, J. P., & Baye, R. J. (2003). Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in south-west France: Spartina neyrautii re-examined. Plant Systematics and Evolution, 237, 87–97. https://doi.org/10.1007/s00606-002-0251-8
  • Blasio, F., Prieto, P., Pradillo, M., & Naranjo, T. (2022). Genomic and meiotic changes accompanying polyploidization. Plants, 11, 125. https://doi.org/10.3390/plants11010125
  • Boutte, J., Aliaga, B., Lima, O., Ferreira de Carvalho, J., Ainouche, A., Macas, J., Rousseau-Gueutin, M., Coriton, O., Ainouche, M., & Salmon, A. (2016a). Haplotype detection from next-generation sequencing in high-ploidy-level species: 45S rDNA gene copies in the hexaploid Spartina maritima. G3 (Bethesda, Md.), 6, 29–40. https://doi.org/10.1534/g3.115.023242
  • Bortolus, A., Adam, P., Adams, J. B., Ainouche, M. L., Ayres, D., Bertness, M. D., Bouma, T. J., Bruno, J. F., Caçador, I., Carlton, J. T., Castillo, J. M., Costa, C., Davy, A. J., Deegan, L., Duarte, B., Figueroa, E., Gerwein, J., Gray, A. J., Grosholz, E. D., … Salmon, A. (2019). Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus. Ecology, 100, e02863. https://doi.org/10.1002/ecy.2863
  • Boutte, J., Ferreira de Carvalho, J., Rousseau-Gueutin, M., Poulain, J., Da Silva, C., Wincker, P., Ainouche, M., & Salmon, A. (2016b). Reference transcriptomes and detection of duplicated copies in hexaploid and allododecaploid Spartina species (Poaceae). Genome Biology and Evolution, 8, 3030–3044. https://doi.org/10.1093/gbe/evw209
  • Brochmann, C., Brysting, A. K., Alsos, I. G., Borgen, L., Grundt, H. H., Scheen, A. C., & Elven, R. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521–536. https://doi.org/10.1111/j.1095-8312.2004.00337.x
  • Cavé-Radet, A., Giraud, D., Lima, O., El Amrani, A., Aïnouche, M., & Salmon, A. (2020). Evolution of small RNA expression following hybridization and allopolyploidization: Insights from Spartina species (Poaceae, Chloridoideae). Plant Molecular Biology, 102, 55–72. https://doi.org/10.1007/s11103-019-00931-w
  • Cavé-Radet, A., Salmon, A., Lima, O., Ainouche, M. L., & El Amrani, A. (2019). Increased tolerance to organic xenobiotics following recent allopolyploidy in Spartina (Poaceae). Plant Science: An International Journal of Experimental Plant Biology, 280, 143–154. https://doi.org/10.1016/j.plantsci.2018.11.005
  • Cavé-Radet, A., Salmon, A., Tran Van Canh, L., Moyle, R. L., Pretorius, L.-S., Lima, O., Ainouche, M. L., & El Amrani, A. (2022). Recent allopolyploidy alters Spartina microRNA expression in response to xenobiotic-induced stress. Plant Molecular Biology, 111, 309–328. https://doi.org/10.1007/s11103-022-01328-y
  • Chelaifa, H., Monnier, A., & Ainouche, M. (2010). Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). The New Phytologist, 186, 161–174. https://doi.org/10.1111/j.1469-8137.2010.03179.x
  • Cheng, F., Wu, J., Cai, X., Liang, J., Freeling, M., & Wang, X. (2018). Gene retention, fractionation, and subgenome differences in polyploid plants. Nature Plants, 4, 258–268. https://doi.org/10.1038/s41477-018-0136-7
  • Christin, P. A., Spriggs, E., Osborne, C. P., Strömberg, C. A., Salamin, N., & Edwards, E. J. (2014). Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology, 63, 153–165. https://doi.org/10.1093/sysbio/syt072
  • Deb, S. K., Edger, P. P., Pires, J. C., & McKain, M. R. (2023). Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: A genomic and epigenomic perspective. The New Phytologist, 238, 2284–2304. https://doi.org/10.1111/nph.18927
  • Doyle, J. J., Flagel, L. E., Paterson, A. H., Rapp, R. A., Soltis, D. E., Soltis, P. S., & Wendel, J. F. (2008). Evolutionary genetics of genome merger and doubling in plants. Annual Review of Genetics, 42, 443–461. https://doi.org/10.1146/annurev.genet.42.110807.091524
  • Ferreira de Carvalho, J., Boutte, J., Bourdaud, P., Chelaifa, H., Ainouche, K., Salmon, A., & Ainouche, M. (2017). Gene expression variation in natural populations of hexaploid and allododecaploid Spartina species (Poaceae). Plant Systematics and Evolution, 303, 1061–1079. https://doi.org/10.1007/s00606-017-1446-3
  • Ferreira de Carvalho, J., Poulain, J., Da Silva, C., Wincker, P., Michon-Coudouel, S., Dheilly, A., Naquin, D., Boutte, J., Salmon, A., & Ainouche, M. (2013). Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity, 110, 181–193. https://doi.org/10.1038/hdy.2012.76
  • Ferris, C., King, R. A., & Gray, A. J. (1997). Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C. E. Hubbard. Molecular Ecology, 6, 185–187. https://doi.org/10.1046/j.1365-294X.1997.00165.x
  • Fortune, P. M., Schierenbeck, K. A., Ainouche, A. K., Jacquemin, J., Wendel, J. F., & Ainouche, M. L. (2007). Evolutionary dynamics of waxy and the origin of hexaploid Spartina species. Molecular Phylogenetics and Evolution, 43, 1040–1055. https://doi.org/10.1016/j.ympev.2006.11.018
  • Giraud, D., Lima, O., Huteau, V., Coriton, O., Boutte, J., Kovarik, A., Leitch, A. R., Leitch, I. J., Aïnouche, M., & Salmon, A. (2021a). Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. Plant Science: An International Journal of Experimental Plant Biology, 302, 110671. https://doi.org/10.1016/j.plantsci.2020.110671
  • Giraud, D., Lima, O., Rousseau-Gueutin, M., Salmon, A., & Aïnouche, M. (2021b). Gene and transposable element expression evolution following recent and past polyploidy events in Spartina (Poaceae). Frontiers in Genetics, 12, 589160. https://doi.org/10.3389/fgene.2021.589160
  • Granse, D., Romeiro Motta, M., Suchrow, S., von Schwartzenberg, K., Schnittger, A., & Jensen, K. (2021). The overlooked hybrid: Geographic distribution and niche differentiation between Spartina cytotypes (Poaceae) in Wadden Sea Salt Marshes. Estuaries and Coasts, 45, 1409–1421. https://doi.org/10.1007/s12237-021-00985-4
  • Gray, A. J., & Benham, P. E. (1990). Spartina anglica: A research review. HMSO.
  • Gray, A. J., Marshall, D. F., & Raybould, A. F. (1991). A century of evolution in Spartina anglica. In Advances in ecological research (vol. 21, pp. 1–62). Academic Press.
  • Groves, H., & Groves, J. (1879). The Spartinas of southampton water. Journal of Botany, 17, 277.
  • Groves, H., & Groves, J. (1880). Spartina townsendi nobis. Report of the Botanical Society.
  • Groves, H., & Groves, J. (1882). On Spartina townsendi groves. Journal of Botany, 20, 1–2.
  • Guenegou, M. C., Citharel, J., & Levasseur, J. E. (1988). The hybrid status of Spartina anglica (Poaceae). Enzymatic analysis of the species and the presumed parents. Canadian Journal of Botany, 66, 1830–1833. https://doi.org/10.1139/b88-249
  • Guo, X., & Han, F. (2014). Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. The Plant Cell, 26, 4311–4327. https://doi.org/10.1105/tpc.114.129841
  • Harrison-Day, V., Prahalad, V., McHenry, M. T., Aalders, J., & Kirkpatrick, J. B. (2023). Introduced Spartina anglica modifies fish habitat in southern temperate succulent saltmarshes. Restoration Ecology, 31, e13812. https://doi.org/10.1111/rec.13812
  • Hegarty, M. J., Abbott, R. J., & Hiscock, S. J. (2012). Allopolyploid speciation in action: Origin and evolution of Senecio cambrensis. In P. S. Soltis & D. E. Soltis (Eds.), Polyploidy and genome evolution (pp. 245–270).
  • Heslop-Harrison, J. S., Schwarzacher, T., & Liu, Q. (2023). Polyploidy: its consequences and enabling role in plant diversification and evolution. Annals of Botany, 131(1), 1–10. https://doi.org/10.1093/aob/mcac132
  • Heywood, V. H. (1978). Notulae systematicae ad floram europaeam spectantes. Botanical Journal of the Linnean Society, 76, 297–384. https://doi.org/10.1111/j.1095-8339.1978.tb01817.x
  • Hubbard, C. E. (1957). In: Report of the British Ecological Society Symposium on Spartina. Journal of Ecology, 45, 612–616.
  • Hubbard, J. C. E., Stebbings, R. E. (1967). Distribution, dates of origin, and acreage of Spartina townsendii (s.1.) marshes in Great Britain. Proceedings of the Botanical Society of the British Isles, 7, 1–7.
  • Hubbard, J. C. E., & Stebbings, R. E. (1968). Spartina marshes in southern England. VII. Stratigraphy of the Keysworth Marsh, Poole Harbour. Journal of Ecology, 56, 707–722.
  • Huska, D., Leitch, I. J., de Carvalho, J. F., Leitch, A. R., Salmon, A., Ainouche, M., & Kovarik, A. (2016). Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biological Invasions, 18, 2137–2151. https://doi.org/10.1007/s10530-015-0956-6
  • Huskins, C. L. (1930a). Origin of Spartina townsendii. Nature, 127, 781–781. https://doi.org/10.1038/127781b0
  • Huskins, C. L. (1930b). The origin of Spartina townsendii. Genetica, 12, 531–538. https://doi.org/10.1007/BF01487665
  • Ihien Katche, E., & Mason, S. (2023). Resynthesized rapeseed (Brassica napus): Breeding and genomics. Critical Reviews in Plant Sciences, 42, 65–92. https://doi.org/10.1080/07352689.2023.2186021
  • Kim, E. K., Kil, J., Joo, Y. K., & Jung, Y. S. (2015). Distribution and botanical characteristics of unrecorded alien weed Spartina anglica in Korea. Weed & Turfgrass Science, 4, 65–70. https://doi.org/10.5660/WTS.2015.4.1.65
  • Kim, J., Heo, Y. M., Yun, J., Lee, H., Kim, J. J., & Kang, H. (2022). Changes in archaeal community and activity by the invasion of Spartina anglica along soil depth profiles of a coastal wetland. Microbial Ecology, 83, 436–446. https://doi.org/10.1007/s00248-021-01770-3
  • Kreiner, J. M., Kron, P., & Husband, B. C. (2017). Frequency and maintenance of unreduced gametes in natural plant populations: Associations with reproductive mode, life history, and genome size. The New Phytologist, 214, 879–889. https://doi.org/10.1111/nph.14423
  • Lacambra, C., Cutts, N., Allen, J., Burd, F., & Elliot, M. (2004). Spartina anglica: A review of its status, dynamics, and management (vol. 527). English Nature.
  • Lambert, J. M. (1964). The Spartina story. Nature, 204, 1136–1138. https://doi.org/10.1038/2041136a0
  • Lawton-Rauh, A. (2003). Evolutionary dynamics of duplicated genes in plants. Molecular Phylogenetics and Evolution, 29, 396–409. https://doi.org/10.1016/j.ympev.2003.07.004
  • Lee, C. E. (2002). Evolutionary genetics of invasive species. Trends in Ecology & Evolution, 17, 386–391. https://doi.org/10.1016/S0169-5347(02)02554-5
  • Levy, A. A., & Feldman, M. (2022). Evolution and origin of bread wheat. The Plant Cell, 34, 2549–2567. https://doi.org/10.1093/plcell/koac130
  • Leitch, I. J., & Bennett, M. D. (2004). Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 82, 651–663. https://doi.org/10.1111/j.1095-8312.2004.00349.x
  • Levy, A. A., & Feldman, M. (2004). Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biological Journal of the Linnean Society, 82, 607–613. https://doi.org/10.1111/j.1095-8312.2004.00346.x
  • Li, F., Liu, X., Zhu, J., Li, J., Gao, K., & Zhao, C. (2022). The role of genetic factors in the differential invasion success of two Spartina species in China. Frontiers in Plant Science, 13, 909429. https://doi.org/10.3389/fpls.2022.909429
  • Li, H., Zhi, Y., An, S., Zhao, L., Zhou, C., Deng, Z., & Gu, S. (2009). Density-dependent effects on the dieback of exotic species Spartina anglica in coastal China. Ecological Engineering, 35, 544–552. https://doi.org/10.1016/j.ecoleng.2008.03.001
  • Lim, K. Y., Soltis, D. E., Soltis, P. S., Tate, J., Matyasek, R., Srubarova, H., Kovarik, A., Pires, J. C., Xiong, Z., & Leitch, A. R. (2008). Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PloS One, 3, e3353. https://doi.org/10.1371/journal.pone.0003353
  • Malinska, H., Tate, J. A., Matyasek, R., Leitch, A. R., Soltis, D. E., Soltis, P. S., & Kovarik, A. (2010). Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evolutionary Biology, 10, 291. https://doi.org/10.1186/1471-2148-10-291
  • Marchant, C. J. (1963). Corrected chromosome numbers for Spartina x townsendii and its parent species. Nature, 199, 929–929. https://doi.org/10.1038/199929a0
  • Marchant, C. J. (1967). Evolution in Spartina (Gramineae) I History and morphology of the genus in Britain. Journal of the Linnean Society of London, Botany, 60, 1–24. https://doi.org/10.1111/j.1095-8339.1967.tb00076.x
  • Marchant, C. J. (1968). Evolution in Spartina (Gramineae): II Chromosomes, basic relationships, and the problem of S × townsendii agg. Botanical Journal of the Linnean Society, 60, 381–409. https://doi.org/10.1111/j.1095-8339.1968.tb00096.x
  • Marchant, C. J. (1977). Hybrid characters in Spartina × neyrautii Fouc., a taxon rediscovered in northern Spain. Botanical Journal of the Linnean Society, 74, 289–296.
  • Moghe, G. D., & Shiu, S. H. (2014). The causes and molecular consequences of polyploidy in flowering plants. Annals of the New York Academy of Sciences, 1320, 16–34. https://doi.org/10.1111/nyas.12466
  • Muhammad, B. L., & Ki, J. S. (2022). Hybrid origin of the invasive Spartina anglica inferred from chloroplast and nuclear ITS phylogenies. Aquatic Botany, 178, 103484. https://doi.org/10.1016/j.aquabot.2021.103484
  • Muhammad, B. L., & Ki, J. S. (2023). Evolutionary insight into the invasive allopolyploidy Spartina anglica inferred from multiple chloroplast DNA and nuclear Waxy gene. Aquatic Botany, 187, 103655. https://doi.org/10.1016/j.aquabot.2023.103655
  • Nieto Feliner, G., Casacuberta, J., & Wendel, J. F. (2020). Genomics of evolutionary novelty in hybrids and polyploids. Frontiers in Genetics, 11, 792. https://doi.org/10.3389/fgene.2020.00792
  • Oliver, F. W. (1925). Spartina townsendii; its mode of establishment, economic uses, and taxonomic status. Journal of Ecology, 13, 74–91.
  • Ozkan, H., & Feldman, M. (2009). Rapid cytological diploidization in newly formed allopolyploids of the wheat (Aegilops-Triticum) group. Genome, 52, 926–934. https://doi.org/10.1139/g09-067
  • Ozkan, H., Levy, A. A., & Feldman, M. (2001). Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. The Plant Cell, 13, 1735–1747. https://doi.org/10.1105/tpc.010082
  • Pandian, T. J. (2022). Evolution and speciation in plants. CRC Press.
  • Papon, N., Lasserre‐Zuber, P., Rimbert, H., De Oliveira, R., Paux, E., & Choulet, F. (2023). All families of transposable elements were active in the recent wheat genome evolution and polyploidy had no impact on their activity. The Plant Genome, 16, e20347. https://doi.org/10.1002/tpg2.20347
  • Parisod, C., Salmon, A., Zerjal, T., Tenaillon, M., Grandbastien, M. A., & Ainouche, M. (2009). Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. The New Phytologist, 184, 1003–1015. https://doi.org/10.1111/j.1469-8137.2009.03029.x
  • Peterson, P. M., Romaschenko, K., Arrieta, Y. H., & Saarela, J. M. (2014). A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). TAXON, 63, 1212–1243. https://doi.org/10.12705/636.19
  • R Core Team. (2022). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org.
  • Ramsey, J., & Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 29, 467–501. https://doi.org/10.1146/annurev.ecolsys.29.1.467
  • Raybould, A. F. (1989). The Population Genetics of Spartina anglica. C. E. Hubbard. [PhD Thesis]. University of Birmingham.
  • Raybould, A. F., Gray, A. J., Lawrence, M. J., & Marshall, D. F. (1991a). The evolution of Spartina anglica CE Hubbard (Gramineae): genetic variation and status of the parental species in Britain. Biological Journal of the Linnean Society, 44, 369–380. https://doi.org/10.1111/j.1095-8312.1991.tb00626.x
  • Raybould, A. F., Gray, A. J., Lawrence, M. J., & Marshall, D. F. (1991b). The evolution of Spartina anglica CE Hubbard (Gramineae): origin and genetic variability. Biological Journal of the Linnean Society, 43, 111–126. https://doi.org/10.1111/j.1095-8312.1991.tb00588.x
  • Renny-Byfield, S., Ainouche, M., Leitch, I. J., Lim, K. Y., Le Comber, S. C., & Leitch, A. R. (2010). Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Annals of Botany, 105, 527–533. https://doi.org/10.1093/aob/mcq008
  • Rousseau-Gueutin, M., Bellot, S., Martin, G. E., Boutte, J., Chelaifa, H., Lima, O., Michon-Coudouel, S., Naquin, D., Salmon, A., Ainouche, K., & Ainouche, M. (2015). The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): comparative analyses and molecular dating. Molecular Phylogenetics and Evolution, 93, 5–16. https://doi.org/10.1016/j.ympev.2015.06.013
  • Salmon, A., Ainouche, M. L., & Wendel, J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 14, 1163–1175. https://doi.org/10.1111/j.1365-294X.2005.02488.x
  • Shan, S., Boatwright, J. L., Liu, X., Chanderbali, A. S., Fu, C., Soltis, P. S., & Soltis, D. E. (2020). Transcriptome dynamics of the inflorescence in reciprocally formed allopolyploid Tragopogon miscellus (Asteraceae). Frontiers in Genetics, 11, 888. https://doi.org/10.3389/fgene.2020.00888
  • Shin, W., Kim, J. H., & Lee, E. J. (2020). Effect of native Suaeda japonica structure on the initial seed settlement of an invasive plant Spartina anglica. Aquatic Botany, 161, 103175. https://doi.org/10.1016/j.aquabot.2019.103175
  • Skalická, K., Lim, K. Y., Matyasek, R., Matzke, M., Leitch, A. R., & Kovarik, A. (2005). Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomenstosiformis genome donor of a synthetic allotetraploid tobacco. The New Phytologist, 166, 291–303. https://doi.org/10.1111/j.1469-8137.2004.01297.x
  • Soltis, D. E., Buggs, R. J., Doyle, J. J., & Soltis, P. S. (2010). What we still don’t know about polyploidy. TAXON, 59, 1387–1403. https://doi.org/10.1002/tax.595006
  • Soltis, D. E., & Soltis, P. S. (1999). Polyploidy: Recurrent formation and genome evolution. Trends in Ecology & Evolution, 14, 348–352. https://doi.org/10.1016/s0169-5347(99)01638-9
  • Soltis, P. S., & Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039
  • Stapf, O. (1908). Spartina townsendii (vol. 43, pp. 33–35). Gardeners’ Chronicle.
  • Stapf, O. (1913). Townsend’s grass or rice grass. Proceedings of the Bournemouth Natural Science Society, 5, 76–82.
  • Strong, D. R., & Ayres, D. R. (2013). Ecological and evolutionary misadventures of Spartina. Annual Review of Ecology, Evolution, and Systematics, 44, 389–410. https://doi.org/10.1146/annurev-ecolsys-110512-135803
  • Thompson, J. D. (1990). Morphological variation among natural populations of Spartina anglica. In A. J. Gray and P. E. M. Benham (Eds.), Spartina anglica - A research review (pp. 26–33). HMSO.
  • Van de Peer, Y., Ashman, T. L., Soltis, P. S., & Soltis, D. E. (2021). Polyploidy: An evolutionary and ecological force in stressful times. The Plant Cell, 33, 11–26. https://doi.org/10.1093/plcell/koaa015
  • Wang, X., Morton, J. A., Pellicer, J., Leitch, I. J., & Leitch, A. R. (2021). Genome downsizing after polyploidy: Mechanisms, rates and selection pressures. The Plant Journal: For Cell and Molecular Biology, 107, 1003–1015. https://doi.org/10.1111/tpj.15363
  • Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42, 225–249.
  • Wong, J. X., Costantini, F., Merloni, N., Savelli, L., Geelen, D., & Airoldi, L. (2018). The widespread and overlooked replacement of Spartina maritima by non-indigenous S. anglica and S. townsendii in north-western Adriatic saltmarshes. Biological Invasions, 20, 1687–1702. https://doi.org/10.1007/s10530-017-1654-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.