233
Views
3
CrossRef citations to date
0
Altmetric
Articles

New camerate crinoid genera from the Upper Ordovician (Katian) of Estonia: evolutionary origin of family Opsiocrinidae and a phylogenetic assessment of Ordovician Monobathrida

&
Pages 597-611 | Received 23 Jun 2017, Accepted 20 Feb 2018, Published online: 27 Mar 2018

References

  • Ainsaar, L. & Meidla, T. 2001. Facies and stratigraphy of the middle Caradoc mixed siliciclastic-carbonate sediments in eastern Baltoscandia. Proceedings of the Estonian Academy of Sciences, Geology, 50, 5–23.
  • Ausich, W. I. 1985. New crinoids and revision of Superfamily Glyptocrinacea (early Silurian, Ohio). Journal of Paleontology, 59, 793–808.
  • Ausich, W. I. 1986. Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60, 84–106.
  • Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70, 955–964.
  • Ausich, W. I. 1998a. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72, 499–510.
  • Ausich, W. I. 1998b. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. The University of Kansas Paleontological Contributions, 9, 1–36.
  • Ausich, W. I. & Wilson, M. A. 2016. Llandovery (early Silurian) crinoids from Hiiumaa Island, western Estonia. Journal of Paleontology, 90, 1138–1147.
  • Ausich, W. I., Wilson, M. A. & Vinn, O. 2012. Crinoids from the Silurian of western Estonia. Acta Palaeontologica Polonica, 57, 613–631.
  • Ausich, W. I., Kammer, T. W., Rhenberg, E. C. & Wright, D. F. 2015. Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology, 58, 937–952.
  • Ausich, W. I., Wilson, M. A. & Vinn, O. 2015. Wenlock and Pridoli (Silurian) crinoids from Saaremaa, western Estonia (Phylum Echinodermata). Journal of Paleontology, 89, 72–81.
  • Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C. & Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42, 97–107.
  • Bergström, S. M., Schmitz, B., Saltzman, M. R. & Huff, W. D. 2010. The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: occurrence, chronostratigraphic significance, and paleoenvironmental relationships. Geological Society of America, Special Papers, 466, 37–67.
  • Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews, 72, 39–66.
  • Cole, S. R. 2017. Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91, 815–828.
  • Cole, S. R. & Ausich, W. I. 2015. Phylogenetic analysis of the Ordovician Diplobathrida (Subclass Camerata, Class Crinoidea): implications for early camerate evolution. Cuadernos del museo Geominero, 19, 41–44.
  • Cole, S. R., Ausich, W. I., Colmenar, J. & Zamora, S. 2017. Filling the Gondwanan gap: diverse crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain). Journal of Paleontology, 91, 715–734.
  • Deline, B. & Ausich, W. I. 2011. Testing the plateau: a reexamination of disparity and morphologic constraints in early Paleozoic crinoids. Paleobiology, 37, 214–236.
  • Donovan, S. K. & Cope, J. C. W. 1989. A new camerate crinoid from the Arenig of south Wales. Palaeontology, 32, 101–107.
  • Dronov, A. & Holmer, L. E. 1999. Depositional sequences in the Ordovician of Baltoscandia. Acta Universitatis Carolinae Geologica, 43, 133–136.
  • Dronov, A. V., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R. 2011. Ordovician of Baltoscandia: facies, sequences and sea-level changes. Cuadernos del Museo Geominero, 14, 143–150.
  • Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, 89, 7325–7329.
  • Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20, 320–344.
  • Foote, M. 1997. The evolution of morphological disparity. Annual Review of Ecology and Systematics, 28, 129–152.
  • Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25, 1–115.
  • Gould, S. J. 1989. Wonderful Life. Norton, New York, 347 pp.
  • Hatch, J. R., Jacobson, S. R., Witzke, B. J., Risatti, J. B., Anders, D. E., Wattney, W. L., Newell, K. D. & Vuletich, A. K. 1987. Possible late Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, mid-continent and east-central United States. American Association of Petroleum Geologists, Bulletin, 71, 1342–1354.
  • Hecker, R. F. 1958. New data on the genus Achradocystites (Echinodermata, Paracrinoidea). Trudy Instituta geologii AN ESSR. 3, 145–162. [ In Russian, with Germany summary].
  • Hints, L. 1998. Oandu Stage (Caradoc) in central North Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 47, 158–172.
  • Hints, L. & Meidla, T. 1997. Pirgu Stage. Pp. 234–241 in A. Raukas & A. Teedumäe (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn.
  • Jaekel, O. 1899. Stammesgeschichte der Pelmatozoen. J. Springer, Berlin, 441 pp., 18 pls.
  • Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläeontologische Zeitschrift, 3, 1–128.
  • Jell, P. A. 1999. Silurian and Devonian crinoids from central Victoria. Memoirs of the Queensland Museum, 43, 1–114.
  • Kaljo, D. 2004. Diversity of late Ordovician rugose corals in Baltoscandia: role of environmental changes and comparison with other areas. Proceedings of the Estonian Academy of Sciences, Geology, 53, 233–245.
  • Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I. & Deline, B. 2013. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS ONE, 8, 1–16.
  • Kesling, R. V. 1967. Cystoids. Pp. S85–S267 in R. C. Moore (ed.) Treatise on invertebrate paleontology, Part S. Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.
  • Kesling, R. V. 1968. Ameliacrinus benderi, a new dicyclic camerate crinoid from the Middle Devonian Silica Formation in northwestern Ohio. University of Michigan Museum of Paleontology Contribution, 22, 155–162.
  • Kesling, R. V. & Meyer, D. L. 1963. The crinoid Opsiocrinus mariae Kier in the Bell Shale of Michigan. University of Michigan Museum of Paleontology Contribution, 18, 177–184.
  • Kier, P. M. 1952. Echinoderms of the middle Devonian Silica Formation of Ohio. University of Michigan Museum of Paleontology Contribution, 10, 59–81.
  • Kier, P. M. 1958. Infrabasals in the crinoid Opsiocrinus Kier. University of Michigan Museum of Paleontology Contribution, 14, 201–206.
  • Kröger, B., Hints, L. & Lehnert, O. 2014a. Age, facies, and geometry of the Sandbian/Katian (Upper Ordovician) pelmatozoan-bryozoan-receptaculitid reefs of the Vasalemma Formation, northern Estonia. Facies, 60, 963–986.
  • Kröger, B., Hints, L. & Lehnert, O. 2017. Ordovician reef and mound evolution: the Baltoscandian picture. Geological Magazine, 154, 683–706.
  • Kröger, B., Hints, L., Lehnert, O., Männik, P. & Joachimski, M. 2014b. The early Katian (Late Ordovician) reefs near Saku, northern Estonia and the age of the Saku Member, Vasalemma Formation. Estonian Journal of Earth Sciences, 63, 271–276.
  • Männil, R. 1960. Stratigrafia oanduskogo (‘Vasalemmaskogo’) gorisonta. Trudy Instituta Geologii Akademii Nauk Estonskoi SSR, 5, 89–122. [In Russian, with English summary].
  • Meidla, T., Ainsaar, L., Hints, L., Hints, O., Martma, T. & Nõlvak, J. 1999. The mid-Caradocian biotic and isotopic event in the Ordovician of the East Baltic. Acta Universitatis Carolinae, Geologica, 43, 503–506.
  • Miller, J. S. 1821. A natural history of the Crinoidea, or lily-shaped animals; with observations on the genera, Asteria, Euryale, Comatula and Marsupites. Bryan & Co., Bristol, 150 pp.
  • Moore, R. C. 1952. Crinoids. Pp. 604–652 in R. C. Moore, C. G. Lalicker & A. G. Fischer (eds) Invertebrate fossils. McGraw-Hill, New York.
  • Moore, R. C. & Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 1–154.
  • Moore, R. C. & Teichert, C. 1978. Treatise on invertebrate paleontology, Part T. Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, 1027 pp.
  • Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. Pp. 192–204 in A. Raukas & A. Teedumäe (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, Estonia.
  • Põlma, L., Sarv, L. & Hints, L. 1988. Lithology and fauna of the Caradoc Series type sections in North Estonia. Valgus, Tallinn, 101 pp. [In Russian, with English summary].
  • Rõõmusoks, A. 1970. Stratigrafia Viruskoi i Harioskoi Serii (Ordovik) Severnoi Estonii. Valgus, Tallinn, 343 pp. [In Russian, with English summary].
  • Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, New York, 296 pp.
  • Shavit, L., Penny, D., Hendy, M. D. & Holland, B. R. 2007. The problem of rooting rapid radiations. Molecular Biology and Evolution, 24, 2400–2411.
  • Simms, M. J. 1993. Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia, 26, 303–312.
  • Sprinkle, J. 1982. Acolocrinus. Pp. 111–118 in J. Sprinkle (ed.) Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, 1.
  • Sprinkle, J. & Moore, R. C. 1978. Hybocrinida. Pp. T564–T574 in R. C. Moore & C. Teichert (eds) Treatise on invertebrate paleontology, Part T. Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
  • Stukalina, G. A. 2000. Paleozoic crinoids. VSEGEI Press, St. Petersburg, 283 pp. [In Russian].
  • Stukalina, G. A. & Hints, L. 1989. On the morphology and systematics of Achradocystites (Paracrinoidea). Pp. 58–72 in D. Kaljo (ed.) Fossil and recent echinoderm researches. Academy of Sciences of the USSR, Tallinn. [In Russian, with English summary].
  • Swofford, D. L. 2003. PAUP* version 4.0.b10 Phylogenetic analysis using parsimony and other methods. Sinauer Associates, Sunderland.
  • Torsvik, T. T. & Cocks, L. R. M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Pp. 5–24 in D. A. T. Harper & T. Servais (eds) Early Palaeozoic biogeography and palaeogeography. Geological Society of London, Memoir, 38.
  • Ubaghs, G. 1978. General morphology. Pp. T58–T216 in R. C. Moore & C. Teichert (eds) Treatise on invertebrate paleontology, Part T. Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
  • Volborth, A. 1870. Über Achradocystites und Cystoblastus, zwei neue Crinoideen – Gattungen, eingeleitet durch kritische Betrauchtungen uber die Organe der Cystideen. Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg, Serie 7, 16, 1–15.
  • Wachsmuth, C. & Springer, F. 1885. Discussion of the classification and relations of the brachiate crinoids, and conclusions of the generic descriptions. Pp. 225–364 in Revision of the Palaeocrinoidea. Part 3, Section 1. Proceedings of the Academy of Natural Sciences of Philadelphia, Philadelphia.
  • Webster, G. D., Waters, J. & Chen, X. 2009. Revision of the Chen and Yao Devonian to Permian crinoids from Western Yunnan. Palaeobiodiversity and Palaeoenvironments, 89, 119–160.
  • Wright, D. F. 2015. Fossils, homology, and ‘phylogenetic paleo-ontogeny’: a reassessment of primary posterior plate homologies among fossil and living crinoids with insight from developmental biology. Paleobiology, 41, 570–591.
  • Wright, D. F. 2017. Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91, 799–814.
  • Wright, D. F. & Toom, U. 2017. New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology, 60, 893–910.
  • Wright, D. F., Ausich, W. I., Cole, S. R., Rhenberg, E. C. & Peter, M. E. 2017. Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91, 829–846.
  • Zittel, K. A. von. 1879. Echinoderms. Pp. 308–560 in Handbuch der Palaeontologie, Volume 1, Palaeozoologie. R. Oldenbourg, Leipzig.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.