315
Views
0
CrossRef citations to date
0
Altmetric
Articles

Redescription, taxonomy and phylogenetic relationships of Boavus Marsh, 1871 (Serpentes: Booidea) from the early–middle Eocene of the USA

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1601-1622 | Received 07 Apr 2021, Accepted 18 Apr 2022, Published online: 07 Jun 2022

References

  • Albino, A. M. 2011. Morfología vertebral de Boa constrictor (Serpentes: Boidae) y la validez del género mioceno Pseudoepicrates Auffenberg, 1923. Ameghiniana, 48, 53–62.
  • Alexander, J. P. & Burguer, B. 2001. Stratigraphy and taphonomy of Grizzly Buttes, Bridger Formation, and the middle Eocene of Wyoming. Pp. 165–196 in G. F. Gunnel (ed.) Eocene biodiversity: unusual occurrences and rarely sampled habitats. Academic/Plenum Publishers, New York.
  • Auffenberg, W. 1963. The fossil snakes of Florida. Tulane Studies in Zoology, 10, 131–216.
  • Brattstrom, B. H. 1955. New snakes and lizards from the Eocene of California. Journal of Paleontology, 29, 145–149.
  • Burbrink, F. T. 2005. Inferring the phylogenetic position of Boa constrictor among the Boinae. Molecular Phylogenetics and Evolution, 34, 167–180.
  • Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., Keogh, J. S., Kraus, F., Murphy, R. W., Noonan, B., Raxworthy, C. J., Ruane, S., Lemmon, A. R., Lemmon, E. M. & Zaher, H. 2020. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69, 502–520.
  • Caldwell, M. W., Nydam, R. L., Palci, A. & Apesteguía, S. 2015. The oldest known snakes from the Middle Jurassic–Lower Cretaceous provide insights on snake evolution. Nature Communications, 6, 6996. doi:https://doi.org/10.1038/ncomms6996
  • Cope, E. D. 1872. Third account of new Vertebrata from the Bridger Eocene of Wyoming Territory. Proceedings of the American Philosophical Society, 12, 469–472.
  • Esquerré, D. & Keogh, J. S. 2016. Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas. Ecology Letters, 19, 800–809.
  • Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D. & Lailvaux, S. P. 2016. A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE, 11, e0161070. doi:https://doi.org/10.1371/journal.pone.0161070
  • Garberoglio, F. F., Apesteguía, S., Simões, T. R., Palci, A., Gómez, R. O., Nydam, R. L., Larsson, H. C., Lee, M. S. Y. & Caldwell, M. W. 2019. New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5, eaax5833. doi:https://doi.org/10.1126/sciadv.aax5833
  • Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O. & Behlke, A. D. B. 2012. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53, 3–308.
  • Georgalis, G. L. & Scheyer, T. M. 2019. A new species of Palaeopython (Serpentes) and other extinct squamates from the Eocene of Dielsdorf (Zurich, Switzerland). Swiss Journal of Geosciences, 112, 383–417. doi:https://doi.org/10.1007/s00015-019-00341-6
  • Georgalis, G. L. & Smith, K. T. 2020. Constrictores Oppel, 1811 – the available name for the taxonomic group uniting boas and pythons. Vertebrate Zoology, Senckenberg Gesellschaft für Naturforschung, 70, 291–304.
  • Georgalis, G. L., Rabi, M. & Smith, K. T. 2021. Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe. Swiss Journal of Palaeontology, 140, 1–140. doi:https://doi.org/10.1186/s13358-021-00224-0
  • Gilmore, C. W. 1938. Fossil snakes of North America. Geological Society of North America Special Paper, 9, 1–96.
  • Goloboff, P. A. & Catalano, S. A. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238.
  • Gómez, R. O., Garberoglio, F. F. & Rougier, G. W. 2019. A new Late Cretaceous snake from Patagonia: phylogeny and trends in body size evolution of madtsoiid snakes. Comptes Rendus Palevol, 18, 771–781.
  • Gray, J. E. 1825. A synopsis of the genera of Reptilia and Amphibia. Annals of Philosophy, 10, 193–217.
  • Hoffstetter, R. & Gasc, J. 1969. Vertebrae and ribs of modern reptiles. Pp. 201–310 in C. Gans, A. D.’A. Bellairs & T. Parsons (eds) Biology of the Reptilia, Volume 1. Academic Press, London.
  • Holman, J. A. 2000. Fossil snakes of North America: origin, evolution, distribution, paleoecology. Indiana University Press, Bloomington and Indianapolis, 528 pp.
  • Hsiou, A. S. & Albino, A. M. 2009. Presence of the genus Eunectes (Serpentes, Boidae) in the Neogene of southwestern Amazonia, Brazil. Journal of Herpetology, 43, 612–619.
  • Kluge, A. G. 1991. Boine snake phylogeny and research cycles. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 178, 1–58.
  • Kluge, A. G. 1993a. Calabaria and the phylogeny of erycine snakes. Zoological Journal of the Linnaean Society, 107, 293–351.
  • Kluge, A. G. 1993b. Aspidites and the phylogeny of pythonine snakes. Museum Records Western Australian Museum, Supplement, 19, 1–77.
  • Koch, N. M. & Parry, L. A. 2020. Death is on our side: paleontological data drastically modify phylogenetic hypotheses. Systematic Biology, 69, 1052–1067. doi:https://doi.org/10.1093/sysbio/syaa023
  • Krishtalka, L., West, R. M., Black, C. C., Dawson, M. R., Flynn, J. J., Turnbull, W. D., Stucky, R. K., McKenna, M. C., Cown, T. M., Golz, D. J. & Lillegraven, J. A. 1987. Eocene (Wasatchian through Duchesnean) biochronology of North America. Pp. 77–117 in M. O. Woodburne (ed.) Cenozoic mammals of North America: geochronology and biostratigraphy. University of California Press, Berkeley.
  • LaDuke, T. C. 1991. The fossil snakes of Pit 91, Rancho La Brea, California. Contributions in Science, 424, 1–28.
  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Phylogenetics and Evolution, 34, 772–773.
  • Lee, M. S. Y. & Palci, A. P. 2015. Morphological phylogenetics in the genomic age. Current Biology, 25, R922–R929. doi:https://doi.org/10.1016/j.cub.2015.07.009
  • Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925.
  • Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae, 824 pp.
  • Maddison, W. P. & Maddison, D. R. 2017. Mesquite: a modular system for evolutionary analysis. Version 3.31. Updated at: http://mesquiteproject.org, accessed 18 January 2021.
  • Marsh, O. C. 1871. Description of some new fossil serpents from the Tertiary deposits of Wyoming. American Journal of Sciences, Series 3, 1, 322–329.
  • Noonan, B. P. & Chippindale, P. T. 2006. Dispersal and vicariance: the complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40, 347–358.
  • Nopcsa, F. 1923. Eidolosaurus und Pachyophis, zwei neue Neocom Reptilien. Palaeontographica, 55, 97–154.
  • Onary-Alves, S. Y., Hsiou, A. S. & Rincón, A. 2016. The northernmost South American fossil record of Boa constrictor (Boidae, Boinae) from the Plio–Pleistocene of El Breal de Orocual (Venezuela). Alcheringa, 41, 1–8. doi:https://doi.org/10.1080/03115518.2016.1180031
  • Onary, S. Y. & Hsiou, A. S. 2018. Systematic revision of the early Miocene fossil Pseudoepicrates (Serpentes: Boidae): implications for the evolution and historical biogeography of the West Indian boid snakes (Chilabothrus). Zoological Journal of the Linnean Society, 184, 453–470.
  • Oppel, M. 1811. Die Ordnungen, Familien, und Gattungen der Reptilien, als Prodrom einer Naturgeschichte derselben. Joseph Lindauer, Munich, 86 pp.
  • Owen, R. 1850 (for 1849). Monograph on the fossil Reptilia of the London Clay and of the Bracklesham and other Tertiary beds. Part III. Ophidia (Palaeophis &c.). Monographs of the Palaeontographical Society, 3(2) (No. 6), 51–63.
  • Pyron, R. A., Burbrink, F. T. & Wiens, J. J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 1–53. doi:https://doi.org/10.1186/1471-2148-13-93
  • Pyron, R. A., Reynolds, R. G. & Burbrink, F. T. 2014. A taxonomic revision of boas (Serpentes: Boidae). Zootaxa, 3846, 249–260.
  • Rage, J.-C. 1984. Serpentes. Encyclopedia of paleoherpetology, Part 11. Gustav Fischer Verlag, Germany, 79 pp.
  • Rage, J.-C. 2001. Fossil snakes from the Paleocene of São José de Itaboraí, Brazil. Part II. Boidae. Palaeovertebrata, 30, 111–150.
  • Rambaut, A., Drummond, A. L., Xie, D., Baele, G. & Suchard, M. A. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67, 901–904. doi:https://doi.org/10.1093/sysbio/syy032
  • Reynolds R. G., Niemiller M. L. & Revell L. J. 2014. Toward a tree-of-life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling. Molecular Phylogenetics and Evolution, 71, 201–213.
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
  • Scanferla, C. A., Smith, K. T. & Schaal, S. F. K. 2016. Revision of the cranial anatomy and phylogenetic relationships of the Eocene minute boas Messelophis variatus and Messelophis ermannorum (Serpentes, Booidea). Zoological Journal of the Linnean Society, 176, 182–206.
  • Scanferla, A. & Smith, K. T. 2020. Exquisitely preserved fossil snakes of Messel: insight into the evolution, biogeography, habitat preferences and sensory ecology of early boas. Diversity, 12, 1–15. doi:https://doi.org/10.3390/d12030100
  • Siddall, M. E. 2010. Unringing a bell: metazoan phylogenomics and the partition bootstrap. Cladistics, 26, 444–452.
  • Smith, K. T. & Scanferla, A. 2021. A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany). Geodiversitas, 43, 1–24. doi:https://doi.org/10.5252/geodiversitas2021v43a1
  • Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Updated at: http://paup.phylosolutions.com/tutorials/quick-start/, accessed 18 January 2021.
  • Szyndlar, Z. & Rage, J.‐C. 2003. Non‐Erycine Booidea from the Oligocene and Miocene of Europe. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, 111 pp.
  • Teixeira, G. 2013. Anatomia comparada dos Boinae (Serpentes, Boidae) sul-americanos: uma abordagem osteológica para fins aplicativos na paleontologia de vertebrados. Unpublished Honours thesis, Universidade de São Paulo, 88 pp.
  • Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. 2016. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 204, 23–31.
  • Vasile, S., Csiki-Sava, Z. & Venczel, M. 2013. A new madtsoiid snake from the Upper Cretaceous of the Haţeg Basin, western Romania. Journal of Vertebrate Paleontology, 33, 1100–1119.
  • Vernygora, O. V., Simões, T. R. & Campbell, E. O. 2020. Evaluating the performance of probabilistic algorithms for phylogenetic analysis of big morphological datasets: a simulation study. Systematic Biology, 69, 1088–1105. doi:https://doi.org/10.1093/sysbio/syaa020
  • Williston, S. W. & Gregory, W. K. 1925. The osteology of the reptiles. Harvard University Press, Cambridge, MA, 300 pp.
  • Wing, S. L. 1987. Eocene and Oligocene floras and vegetation of the Rocky Mountains. Annals of the Missouri Botanical Garden, 74, 176–212.
  • Zaher, H. & Smith, K. T. 2020. Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16, 20200735. doi:https://doi.org/10.1098/rsbl.2020.0735
  • Zheng, Y. & Wiens, J. J. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537–547.
  • Zwickl, D. & Hillis, D. M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 5, 588–598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.