207
Views
4
CrossRef citations to date
0
Altmetric
Review

Chagas disease immunogenetics: elusive markers of disease progression

, , , , , , , , , , , , & show all
Pages 367-376 | Received 15 Dec 2016, Accepted 05 Apr 2017, Published online: 19 Apr 2017

References

  • Sabino EC, Ribeiro AL, Salemi VM, et al. Ten-year incidence of Chagas cardiomyopathy among asymptomatic Trypanosoma cruzi-seropositive former blood donors. Circulation. 2013;127(10):1105–1115.
  • Zicker F, Smith PG, Netto JC, et al. Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas’ cardiopathy. Am J Trop Med Hyg. 1990;43(5):498–505.
  • Soares MB, Pontes-De-Carvalho L, Ribeiro-Dos-Santos R. The pathogenesis of Chagas’ disease: when autoimmune and parasite-specific immune responses meet. An Acad Bras Cienc. 2001;73(4):547–559.
  • Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295–1306.
  • Teixeira AR, Hecht MM, Guimaro MC, et al. Pathogenesis of chagas’ disease: parasite persistence and autoimmunity. Clin Microbiol Rev. 2011;24(3):592–630.
  • De Oliveira AP, Ayo CM, Bestetti RB, et al. The role of CCR5 in Chagas disease - a systematic review. Infect Genet Evol. 2016;45:132–137.
  • Luz PR, Miyazaki MI, Neto NC, et al. High levels of mannose-binding lectin are associated with the risk of severe cardiomyopathy in chronic Chagas disease. Int J Cardiol. 2010;143(3):448–450.
  • Luz PR, Boldt AB, Grisbach C, et al. Association of L-ficolin levels and FCN2 genotypes with chronic Chagas disease. PLoS One. 2013;8(4):e60237.
  • Bafica A, Santiago HC, Goldszmid R, et al. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol. 2006;177(6):3515–3519.
  • Silva GK, Costa RS, Silveira TN, et al. Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1beta response and host resistance to Trypanosoma cruzi infection. J Immunol. 2013;191(6):3373–3383.
  • Dey N, Sinha M, Gupta S, et al. Caspase-1/ASC inflammasome-mediated activation of IL-1beta-ROS-NF-kappaB pathway for control of Trypanosoma cruzi replication and survival is dispensable in NLRP3-/- macrophages. PLoS One. 2014;9(11):e111539.
  • Cruz Gda S, Angelo AL, Larocca TF, et al. Assessment of galectin-3 polymorphism in subjects with chronic Chagas disease. Arq Bras Cardiol. 2015;105(5):472–478.
  • Junqueira C, Caetano B, Bartholomeu DC, et al. The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med. 2010;12:e29.
  • Hudson L. Trypanosoma cruzi: the immunological consequences of infection. J Cell Biochem. 1983;21(4):299–304.
  • Hudson L, Guhl F, De Sanchez N, et al. Longitudinal studies of the immune response of Colombian patients infected with Trypanosoma cruzi and T. rangeli. Parasitology. 1988;96(Pt 3):449–460.
  • Ribeirão M, Pereira-Chioccola VL, Rénia L, et al. Chagasic patients develop a type 1 immune response to Trypanosoma cruzi trans-sialidase. Parasite Immunol. 2000;22(1):49–53.
  • Trouiller P, Rey JL, Bouscharain P. [Pharmaceutical development concerning diseases predominating in tropical regions: the concept of indigent drugs]. Ann Pharm Fr. 2000;58(1):43–46.
  • Shikanai-Yasuda MA, Carvalho NB. Oral transmission of Chagas disease. Clin Infect Dis. 2012;54(6):845–852.
  • Marin-Neto JA, Cunha-Neto E, Maciel BC, et al. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115(9):1109–1123.
  • Beltz LA, Sztein MB, Kierszenbaum F. Novel mechanism for Trypanosoma cruzi-induced suppression of human lymphocytes. Inhibition of IL-2 receptor expression. J Immunol. 1988;141(1):289–294.
  • Cetron MS, Basilio FP, Moraes AP, et al. Humoral and cellular immune response of adults from northeastern Brazil with chronic Trypanosoma cruzi infection: depressed cellular immune response to T. cruzi antigen among Chagas’ disease patients with symptomatic versus indeterminate infection. Am J Trop Med Hyg. 1993;49(3):370–382.
  • Gil-Jaramillo N, Motta FN, Favali CB, et al. Dendritic cells: a double-edged sword in immune responses during Chagas disease. Front Microbiol. 2016;7:1076.
  • Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm. 2014;2014:683230.
  • Ayo CM, Dalalio MMDO, Visentainer JE, et al. Genetic susceptibility to Chagas disease: an overview about the infection and about the association between disease and the immune response genes. Biomed Res Int. 2013;2013:1–13.
  • Del Puerto F, Nishizawa JE, Kikuchi M, et al. Protective human leucocyte antigen haplotype, HLA-DRB1*01-B*14, against chronic Chagas disease in Bolivia. PLoS Negl Trop Dis. 2012;6(3):e1587.
  • Dias FC, Castelli EC, Collares CV, et al. The role of HLA-G molecule and HLA-G gene polymorphisms in tumors, viral hepatitis, and parasitic diseases. Front Immunol. 2015;6:9.
  • Corbett CE, Ribeiro U Jr., Prianti MG, et al. Cell-mediated immune response in megacolon from patients with chronic Chagas’ disease. Dis Colon Rectum. 2001;44(7):993–998.
  • El-Sayed NM, Myler PJ, Bartholomeu DC, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309(5733):409–415.
  • Atwood JA 3rd, Weatherly DB, Minning TA, et al. The Trypanosoma cruzi proteome. Science. 2005;309(5733):473–476.
  • Martin DL, Weatherly DB, Laucella SA, et al. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog. 2006;2(8):e77.
  • Alvarez MG, Postan M, Weatherly DB, et al. HLA Class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease. PLoS Negl Trop Dis. 2008;2(9):e288.
  • Dauby N, Alonso-Vega C, Suarez E, et al. Maternal infection with Trypanosoma cruzi and congenital Chagas disease induce a trend to a type 1 polarization of infant immune responses to vaccines. PLoS Negl Trop Dis. 2009;3(12):e571.
  • Olivera GC, Albareda MC, Alvarez MG, et al. Trypanosoma cruzi-specific immune responses in subjects from endemic areas of Chagas disease of Argentina. Microbes Infect. 2010;12(5):359–363.
  • Tonelli RR, Torrecilhas AC, Jacysyn JF, et al. In vivo infection by Trypanosoma cruzi: the conserved FLY domain of the gp85/trans-sialidase family potentiates host infection. Parasitology. 2011;138(4):481–492.
  • Kierszenbaum F, Lopez HM, Sztein MB. Inhibition of Trypanosoma cruzi-specific immune responses by a protein produced by T. cruzi in the course of Chagas’ disease. Immunology. 1994;81(3):462–467.
  • Zhang S, Kim CC, Batra S, et al. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines. PLoS Negl Trop Dis. 2010;4(3):e648.
  • Gomes JA, Bahia-Oliveira LM, Rocha MO, et al. Evidence that development of severe cardiomyopathy in human Chagas’ disease is due to a Th1-specific immune response. Infect Immun. 2003;71(3):1185–1193.
  • Tarleton RL. CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol. 2015;37(3):233–238.
  • Gutierrez FR, Guedes PM, Gazzinelli RT, et al. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 2009;31(11):673–685.
  • Sullivan NL, Eickhoff CS, Sagartz J, et al. Deficiency of antigen-specific B cells results in decreased Trypanosoma cruzi systemic but not mucosal immunity due to CD8 T cell exhaustion. J Immunol. 2015;194(4):1806–1818.
  • Gutierrez FR, Mariano FS, Oliveira CJ, et al. Regulation of Trypanosoma cruzi-induced myocarditis by programmed death cell receptor 1. Infect Immun. 2011;79(5):1873–1881.
  • Dutra WO, Martins-Filho OA, Cancado JR, et al. Chagasic patients lack CD28 expression on many of their circulating T lymphocytes. Scand J Immunol. 1996;43(1):88–93.
  • Souza PE, Rocha MO, Menezes CA, et al. Trypanosoma cruzi infection induces differential modulation of costimulatory molecules and cytokines by monocytes and T cells from patients with indeterminate and cardiac Chagas’ disease. Infect Immun. 2007;75(4):1886–1894.
  • De Araujo FF, Da Silveira AB, Correa-Oliveira R, et al. Characterization of the presence of Foxp3(+) T cells from patients with different clinical forms of Chagas’ disease. Hum Pathol. 2011;42(2):299–301.
  • Bonney KM, Engman DM. Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. Am J Pathol. 2015;185(6):1537–1547.
  • Michailowsky V, Luhrs K, Rocha MO, et al. Humoral and cellular immune responses to Trypanosoma cruzi-derived paraflagellar rod proteins in patients with Chagas’ disease. Infect Immun. 2003;71(6):3165–3171.
  • Duschak VG, Riarte A, Segura EL, et al. Humoral immune response to cruzipain and cardiac dysfunction in chronic Chagas disease. Immunol Lett. 2001;78(3):135–142.
  • Kierszenbaum F. On evasion of Trypanosoma cruzi from the host immune response. Lymphoproliferative responses to trypanosomal antigens during acute and chronic experimental Chagas’ disease. Immunology. 1981;44(3):641–648.
  • DosReis GA. Evasion of immune responses by Trypanosoma cruzi, the etiological agent of Chagas disease. Braz J Med Biol Res = Revista Brasileira De Pesquisas Medicas E Biologicas. 2011;44(2):84–90.
  • Nogueira LG, Santos RH, Ianni BM, et al. Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10. PLoS Negl Trop Dis. 2012;6(10):e1867.
  • Machado FS, Koyama NS, Carregaro V, et al. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis. 2005;191(4):627–636.
  • De Oliveira AP, Bernardo CR, Camargo AV, et al. Genetic susceptibility to cardiac and digestive clinical forms of chronic Chagas disease: involvement of the CCR5 59029 A/G polymorphism. PLoS One. 2015;10(11):e0141847.
  • Oliveira AP, Bernardo CR, Camargo AV, et al. CCR5 chemokine receptor gene variants in chronic Chagas’ disease. Int J Cardiol. 2014;176(2):520–522.
  • Florez O, Martin J, Gonzalez CI. Genetic variants in the chemokines and chemokine receptors in Chagas disease. Hum Immunol. 2012;73(8):852–858.
  • Campbell DA, Westenberger SJ, Sturm NR. The determinants of Chagas disease: connecting parasite and host genetics. Curr Mol Med. 2004;4(6):549–562.
  • Houston-Ludlam GA, Belew AT, El-Sayed NM. Comparative transcriptome profiling of human foreskin fibroblasts infected with the Sylvio and Y strains of Trypanosoma cruzi. PLoS One. 2016;11(8):e0159197.
  • Fernandez-Villegas A, Thomas MC, Carrilero B, et al. The innate immune response status correlates with a divergent clinical course in congenital Chagas disease of twins born in a non-endemic country. Acta Trop. 2014;140:84–90.
  • Rizzo LV, Cunha-Neto E, Teixeira AR. Autoimmunity in Chagas’ disease: immunomodulation of autoimmune and T. cruzi-specific immune responses. Mem Inst Oswaldo Cruz. 1988;83 Suppl 1:360–362.
  • Leon Rodriguez DA, Echeverria LE, Gonzalez CI, et al. Investigation of the role of IL17A gene variants in Chagas disease. Genes Immun. 2015;16(8):536–540.
  • Bellini MF, Silistino-Souza R, Varella-Garcia M, et al. Biologic and genetics aspects of chagas disease at endemic areas. J Trop Med. 2012;357948:2012.
  • Nogueira LG, Frade AF, Ianni BM, et al. Functional IL18 polymorphism and susceptibility to Chronic Chagas Disease. Cytokine. 2015;73(1):79–83.
  • Vallejo A, Monge-Maillo B, Gutierrez C, et al. Changes in the immune response after treatment with benznidazole versus no treatment in patients with chronic indeterminate Chagas disease. Acta Trop. 2016;164:117–124.
  • Fabbro DL, Olivera V, Bizai ML, et al. Humoral immune response against P2beta from Trypanosoma cruzi in persons with chronic Chagas disease: its relationship with treatment against parasites and myocardial damage. Am J Trop Med Hyg. 2011;84(4):575–580.
  • Vasconcelos RH, Montenegro SM, Azevedo EA, et al. Genetic susceptibility to chronic Chagas disease: an overview of single nucleotide polymorphisms of cytokine genes. Cytokine. 2012;59(2):203–208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.