171
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in atrioventricular and interventricular optimization of cardiac resynchronization therapy – what’s the gold standard?

&
Pages 183-196 | Received 02 Oct 2017, Accepted 10 Jan 2018, Published online: 16 Jan 2018

References

  • Cleland JGF, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–1549.
  • Bristow M, Saxon L, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–2150.
  • Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–1853.
  • Chung ES, Leon AR, Tavazzi L, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–2616.
  • Daubert J-C, Saxon L, Adamson PB, et al. EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management: a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society; and in collaboration with the Heart Failure Society of America (HFSA), the American Society of Echocardiography (ASE), the American Heart Association (AHA), the European Association of Echocardiography (EAE) of the ESC and the Heart Failure Association of the ESC (HFA). Europace. 2012;2012(14):1236–1286.
  • Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–1338.
  • Higgins SL, Hummel JD, Niazi IK, et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J Am Coll Cardiol. 2003;42:1454–1459.
  • León AR, Abraham WT, Brozena S, et al. Cardiac resynchronization with sequential biventricular pacing for the treatment of moderate-to-severe heart failure. J Am Coll Cardiol. 2005;46:2298–2304.
  • Sinner GJ, Gupta VA, Seratnahaei A, et al. Atrioventricular dyssynchrony from empiric device settings is common in cardiac resynchronization therapy and adversely impacts left ventricular morphology and function. Echocardiography. 2017;34:496–503.
  • Mullens W, Grimm RA, Verga T, et al. Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. J Am Coll Cardiol. 2009;53:765–773.
  • Tracy CM, Epstein AE, Darbar D, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. J Am Coll Cardiol. 2012;60:1297–1313.
  • Brignole M, Auricchio A, Baron-Esquivias G, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2013;34:2281–2329.
  • Ellenbogen KA, Gold MR, Meyer TE, et al. Primary results from the smartdelay determined AV optimization: A comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: A randomized trial comparing empirical, echocardiography- guided, and algorithmic atrioventricular delay programming in cardiac resyncronization therapy. Circulation. 2010;122:2660–2668.
  • Ritter P, Delnoy PPHM, Padeletti L, et al. A randomized pilot study of optimization of cardiac resynchronization therapy in sinus rhythm patients using a peak endocardial acceleration sensor vs. standard methods. Europace. 2012;14:1324–1333.
  • Abraham WT, Gras D, Yu CM. Results from FREEDOM trial—assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy [abstract]. Heart Rhythm Society, 2010 Scientific Sessions, Denver, CO, USA.
  • Abraham WT, León AR, St. John Sutton MG, et al. Randomized controlled trial comparing simultaneous versus optimized sequential interventricular stimulation during cardiac resynchronization therapy. Am Heart J. 2012;164:735–741.
  • Rao RK, Kumar UN, Schafer J, et al. Reduced ventricular volumes and improved systolic function with cardiac resynchronization therapy: a randomized trial comparing simultaneous biventricular pacing, sequential biventricular pacing, and left ventricular pacing. Circulation. 2007;115:2136–2144.
  • Boriani G, Müller CP, Seidl KH, et al. Randomized comparison of simultaneous biventricular stimulation versus optimized interventricular delay in cardiac resynchronization therapy. The resynchronization for the hemodynamic treatment for heart failure management II implantable cardioverter defi. Am Heart J. 2006;151:1057–1065.
  • Krum H, Lemke B, Birnie D, et al. A novel algorithm for individualized cardiac resynchronization therapy: rationale and design of the adaptive cardiac resynchronization therapy trial. Am Heart J. 2012;163:747–752.
  • Brugada J, Delnoy PP, Brachmann J, et al. Contractility sensor-guided optimization of cardiac resynchronization therapy: results from the RESPOND-CRT trial. Eur Heart J. 2017;38:730–738.
  • Gras D, Gupta MS, Boulogne E, et al. Optimization of AV and VV delays in the real-world CRT patient population: an international survey on current clinical practice. Pacing Clin Electrophysiol. 2009;32:236–239.
  • Mukharji J, Rehr RB, Hastillo A, et al. Comparison of atrial contribution to cardiac hemodynamics in patients with normal and severely compromised cardiac function. Clin Cardiol. 1990;13:639–643.
  • Antonini L, Auriti A, Pasceri V, et al. Optimization of the atrioventricular delay in sequential and biventricular pacing: physiological bases, critical review, and new purposes. Europace. 2012;14:929–938.
  • Gold MR, Niazi I, Giudici M, et al. A prospective comparison of AV delay programming methods for hemodynamic optimization during cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2007;18:490–496.
  • Steffel J, Rempel H, Breitenstein A, et al. Comprehensive cardiac resynchronization therapy optimization in the real world. Cardiol J. 2014;21:316–324.
  • Bertini M, Ziacchi M, Biffi M, et al. Interventricular delay interval optimization in cardiac resynchronization therapy guided by Echocardiography versus guided by electrocardiographic QRS interval width. Am J Cardiol. 2008;102:1373–1377.
  • Van Gelder BM, Bracke FA, Meijer A, et al. The hemodynamic effect of intrinsic conduction during left ventricular pacing as compared to biventricular pacing. J Am Coll Cardiol. 2005;46:2305–2310.
  • Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. Circulation. 1999;99:2993–3001.
  • Birnie D, Lemke B, Aonuma K, et al. Clinical outcomes with synchronized left ventricular pacing: analysis of the adaptive CRT trial. Heart Rhythm. 2013;10:1368–1374.
  • Bader H, Garrigue S, Lafitte S, et al. Intra-left ventricular electromechanical asynchrony: A new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol. 2004;43:248–256.
  • Bordachar P, Lafitte S, Reuter S, et al. Echocardiographic parameters of ventricular dyssynchrony validation in patients with heart failure using sequential biventricular pacing. J Am Coll Cardiol. 2004;44:2157–2165.
  • Stellbrink C, Breithardt OA, Franke A, et al. Impact of cardiac resynchronization therapy using hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart failure and ventricular conduction disturbances. J Am Coll Cardiol. 2001;38:1957–1965.
  • Stanton T, Haluska BA, Leano R, et al. Hemodynamic benefit of rest and exercise optimization of cardiac resynchronization therapy. Echocardiography. 2014;31:980–988.
  • Sohaib SMA, Kyriacou A, Jones S, et al. Evidence that conflict regarding size of haemodynamic response to interventricular delay optimization of cardiac resynchronization therapy may arise from differences in how atrioventricular delay is kept constant. Europace. 2015;17:1823–1833.
  • Zuber M, Toggweiler S, Roos M, et al. Comparison of different approaches for optimization of atrioventricular and interventricular delay in biventricular pacing. Europace. 2008;10:367–373.
  • Wiggers C. The muscular reactions of mammalian ventricles to artificial surface stimuli. Am J Physiol. 1925;73:346–378.
  • Haskell RJ, French WJ. Optimum AV interval in dual chamber pacemakers. Pacing Clin Electrophysiol. 1986;9:670–675.
  • Janosik DL, Pearson AC, Buckingham TA, et al. The hemodynamic benefit of differential atrioventricular delay intervals for sensed and paced atrial events during physiologic pacing. J Am Coll Cardiol. 1989;14:499–507.
  • Kindermann M, Fröhlig G, Doerr T, et al. Optimizing the AV delay in DDD pacemaker patients with high degree AV block: mitral valve Doppler versus impedance cardiography. Pacing Clin Electrophysiol. 1997;20:2453–2462.
  • Ritter P, Dib J, Lelievre T, et al. Quick determination of the optimal AV delay at rest in patients paced in DDD mode for complete AV block. Eur J Card Pacing Electrophysiol. 1994;4:S39.
  • Auricchio A, Ding J, Spinelli JC, et al. Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am Coll Cardiol. 2002;39:1163–1169.
  • Jansen AHM, Bracke FA, Van Dantzig JM, et al. Correlation of echo-doppler optimization of atrioventricular delay in cardiac resynchronization therapy with invasive hemodynamics in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97:552–557.
  • Ginks MR, Sciaraffia E, Karlsson A, et al. Relationship between intracardiac impedance and left ventricular contractility in patients undergoing cardiac resynchronization therapy. Europace. 2011;13:984–991.
  • Bocchiardo M, Meyer Zu Vilsendorf D, Militello C, et al. Resynchronization therapy optimization by intracardiac impedance. Europace. 2010;12:1589–1595.
  • Kyriacou A, Pabari PA, Mayet J, et al. Cardiac resynchronization therapy and AV optimization increase myocardial oxygen consumption, but increase cardiac function more than proportionally. Int J Cardiol. 2014;171:144–152.
  • Shanmugam N, Campos AG, Prada-Delgado O, et al. Effect of atrioventricular optimization on circulating N-terminal pro brain natriuretic peptide following cardiac resynchronization therapy. Eur J Heart Fail. 2013;15:534–542.
  • Brenyo A, Kutyifa V, Moss AJ, et al. Atrioventricular delay programming and the benefit of cardiac resynchronization therapy in MADIT-CRT. Heart Rhythm. 2013;10:1136–1143.
  • Martin DO, Lemke B, Birnie D, et al. Investigation of a novel algorithm for synchronized left-ventricular pacing and ambulatory optimization of cardiac resynchronization therapy: results of the adaptive CRT trial. Heart Rhythm. 2012;9:1807–1814.
  • Melzer C, Bondke H, Körber T, et al. Should we use the rate-adaptive AV delay in cardiac resynchronization therapy-pacing? Europace. 2008;10:53–58.
  • Steinberg BA, Wehrenberg S, Jackson KP, et al. Atrioventricular and ventricular-to-ventricular programming in patients with cardiac resynchronization therapy: results from ALTITUDE. J Interv Card Electrophysiol. 2015;44:279–287.
  • Yu CM, Chau E, Sanderson JE, et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation. 2002;105:438–445.
  • Jansen AHM, van Gelder BM. Visual LV motion and invasive LVdP/dtmax for selection and optimisation of cardiac resynchronisation therapy. Neth Heart J. 2008;16:S32–5.
  • Van Gelder BM, Bracke FA, Meijer A, et al. Effect of optimizing the VV interval on left ventricular contractility in cardiac resynchronization therapy. Am J Cardiol. 2004;93:1500–1503.
  • Sogaard P, Egeblad H, Pedersen AK, et al. Sequential versus simultaneous biventricular resynchronization for severe heart failure: evaluation by tissue Doppler imaging. Circulation. 2002;106:2078–2084.
  • Perego GB, Chianca R, Facchini M, et al. Simultaneous vs. sequential biventricular pacing in dilated cardiomyopathy: an acute hemodynamic study. Eur J Heart Fail. 2003;5:305–313.
  • Arbelo E, Tolosana JM, Trucco E, et al. Fusion-optimized intervals (FOI): A new method to achieve the narrowest QRS for optimization of the AV and VV intervals in patients undergoing cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2014;25:283–292.
  • Tamborero D, Vidal B, Tolosana JM, et al. Electrocardiographic versus echocardiographic optimization of the interventricular pacing delay in patients undergoing cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2011;22:1129–1134.
  • Jones RC, Svinarich T, Rubin A, et al. Optimal atrioventricular delay in CRT patients can be approximated using surface electrocardiography and device electrograms. J Cardiovasc Electrophysiol. 2010;21:1226–1232.
  • Vidal B, Tamborero D, Mont L, et al. Electrocardiographic optimization of interventricular delay in cardiac resynchronization therapy: a simple method to optimize the device. J Cardiovasc Electrophysiol. 2007;18:1252–1257.
  • Cheng CM, Huang JL, Wu TJ, et al. Comparison of quick optimization of interventricular delay between simple methods: intracardiac electrogram and surface electrocardiogram after cardiac resynchronization therapy. Europace. 2012;14:1317–1323.
  • Risum N, Tayal B, Hansen TF, et al. Identification of typical left bundle branch block contraction by strain echocardiography is additive to electrocardiography in prediction of long-term outcome after cardiac resynchronization therapy. J Am Coll Cardiol. 2015;66:631–641.
  • Molhoek SG, VAN Erven L, Bootsma M, et al. QRS duration and shortening to predict clinical response to cardiac resynchronization therapy in patients with end-stage heart failure. Pacing Clin Electrophysiol. 2004;27:308–313.
  • Bleeker GB, Schalij MJ, Molhoek SG, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol. 2004;15:544–549.
  • Banz K, Delnoy PP, Billuart JR. Exploratory cost-effectiveness analysis of cardiac resynchronization therapy with systematic device optimization vs. standard (non-systematic) optimization: a multinational economic evaluation. Health Econ Rev. 2015;5:19.
  • Gorcsan J, Abraham T, Agler DA, et al. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting-A report from the American Society of Echocardiography Dyssynchrony writing group endorsed by the heart rhythm society. J Am Soc Echocardiogr. 2008;21:191–213.
  • Meluzín J, Novák M, Müllerová J, et al. A fast and simple echocardiographic method of determination of the optimal atrioventricular delay in patients after biventricular stimulation. Pacing Clin Electrophysiol. 2004;27:58–64.
  • Inoue N, Ishikawa T, Sumita S, et al. Long-term follow-up of atrioventricular delay optimization in patients with biventricular pacing. Circ J. 2005;69:201–204.
  • Kerlan JE, Sawhney NS, Waggoner AD, et al. Prospective comparison of echocardiographic atrioventricular delay optimization methods for cardiac resynchronization therapy. Heart Rhythm. 2006;3:148–154.
  • Morales MA, Startari U, Panchetti L, et al. Atrioventricular delay optimization by Doppler-derived left ventricular dP/dt improves 6-month outcome of resynchronized patients. Pacing Clin Electrophysiol. 2006;29:564–568.
  • Gola A, Pozzoli M, Capomolla S, et al. Comparison of Doppler echocardiography with thermodilution for assessing cardiac output in advanced congestive heart failure. Am J Cardiol. 1996;78:708–712.
  • Sawhney NS, Waggoner AD, Garhwal S, et al. Randomized prospective trial of atrioventricular delay programming for cardiac resynchronization therapy. Heart Rhythm. 2004;1:562–567.
  • Adlbrecht C, Hülsmann M, Gwechenberger M, et al. Electrical optimization of cardiac resynchronization in chronic heart failure is associated with improved clinical long-term outcome. Eur J Clin Invest. 2010;40:678–684.
  • Hardt SE, Yazdi SHF, Bauer A, et al. Immediate and chronic effects of AV-delay optimization in patients with cardiac resynchronization therapy. Int J Cardiol. 2007;115:318–325.
  • Kedia N, Ng K, Apperson-Hansen C, et al. Usefulness of atrioventricular delay optimization using doppler assessment of mitral inflow in patients undergoing cardiac resynchronization therapy. Am J Cardiol. 2006;98:780–785.
  • Doltra A, Vidal B, Silva E, et al. Comparison of hemodynamic versus dyssynchrony assessment for interventricular delay optimization with echocardiography in cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2011;34:984–990.
  • Risum N, Sogaard P, Hansen TF, et al. Comparison of dyssynchrony parameters for VV-optimization in CRT patients. Pacing Clin Electrophysiol. 2013;36:1382–1390.
  • Bertini M, Valzania C, Biffi M, et al. Interventricular delay optimization: a comparison among three different echocardiographic methods. Echocardiography. 2010;27:38–43.
  • Mortensen PT, Sogaard P, Mansour H, et al. Sequential biventricular pacing: evaluation of safety and efficacy. Pacing Clin Electrophysiol. 2004;27:339–345.
  • Zuber M, Toggweiler S, Quinn-Tate L, et al. A comparison of acoustic cardiography and echocardiography for optimizing pacemaker settings in cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2008;31:802–811.
  • Sohaib SMA, Whinnett ZI, Ellenbogen KA, et al. Cardiac resynchronisation therapy optimisation strategies: systematic classification, detailed analysis, minimum standards and a roadmap for development and testing. Int J Cardiol. 2013;170:118–131.
  • Van Geldorp IE, Delhaas T, Hermans B, et al. Comparison of a non-invasive arterial pulse contour technique and echo Doppler aorta velocity-time integral on stroke volume changes in optimization of cardiac resynchronization therapy. Europace. 2011;13:87–95.
  • Nijjer SS, Pabari PA, Stegemann B, et al. The limit of plausibility for predictors of response: application to biventricular pacing. JACC Cardiovasc Imaging. 2012;5:1046–1065.
  • Van Gelder BM, Meijer A, Bracke FA. The optimized V-V interval determined by interventricular conduction times versus invasive measurement by LVdP/dtMAX. J Cardiovasc Electrophysiol. 2008;19:939–944.
  • Pabari PA, Willson K, Stegemann B, et al. When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it. Heart Fail Rev. 2011;16:277–290.
  • Raphael CE, Kyriacou A, Jones S, et al. Multinational evaluation of the interpretability of the iterative method of optimisation of AV delay for CRT. Int J Cardiol. 2013;168:407–413.
  • Jones S, Shun-Shin MJ, Cole GD, et al. Applicability of the iterative technique for cardiac resynchronization therapy optimization: full-disclosure, 50-sequential-patient dataset of transmitral Doppler traces, with implications for future research design and guidelines. Europace. 2014;16:541–550.
  • Bongiorni MG, Proclemer A, Dobreanu D, et al. Preferred tools and techniques for implantation of cardiac electronic devices in Europe: results of the European Heart Rhythm Association survey. Europace. 2013;15:1664–1668.
  • Valzania C, Biffi M, Martignani C, et al. Cardiac resynchronization therapy: variations in echo-guided optimized atrioventricular and interventricular delays during follow-up. Echocardiography. 2007;24:933–939.
  • Gold MR, Yu Y, Singh JP, et al. The effect of left ventricular electrical delay on AV optimization for cardiac resynchronization therapy. Heart Rhythm. 2013;10:988–993.
  • Abraham WT, Gras D, Yu CM, et al. Rationale and design of a randomized clinical trial to assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy: the frequent optimization study using the quickopt method (FREEDOM) trial. Am Heart J. 2010;159:944–948.
  • Baker JH, McKenzie J, Beau S, et al. Acute evaluation of programmer-guided AV/PV and VV delay optimization comparing an IEGM method and echocardiogram for cardiac resynchronization therapy in heart failure patients and dual-chamber ICD implants. J Cardiovasc Electrophysiol. 2007;18:185–191.
  • Hua W, Wang DM, Cai L, et al. A prospective study to evaluate the efficacy of an intracardiac electrogram-based atrioventricular and interventricular intervals optimization method in cardiac resynchronization therapy. Chin Med J (Engl). 2012;125:428–433.
  • Porciani MC, Ricceri I, Attanà P, et al. Discordant electrical and mechanical atrial delays affect intracavitary electrogram-based cardiac resynchronization therapy optimization. Europace. 2012;14:593–598.
  • Wang D, Yu H, Yun T, et al. Long-term clinical effects of programmer-guided atrioventricular and interventricular delay optimization: intracardiac electrography versus echocardiography for cardiac resynchronization therapy in patients with heart failure. J Int Med Res. 2013;41:115–122.
  • Daoud GE, Houmsse M. Cardiac resynchronization therapy pacemaker: critical appraisal of the adaptive CRT-P device. Med Devices Evid Res. 2016;9:19–25.
  • Starling RC, Krum H, Bril S, et al. Impact of a novel adaptive optimization algorithm on 30-day readmissions. evidence from the adaptive CRT trial. JACC Heart Fail. 2015;3:565–572.
  • Birnie D, Hudnall H, Lemke B, et al. Continuous optimization of cardiac resynchronization therapy reduces atrial fibrillation in heart failure patients: results of the adaptive cardiac resynchronization therapy trial. Heart Rhythm. 2017;14:1820–1825.
  • Filippatos G, Birnie D, Gold MR, et al. Rationale and design of the AdaptResponse trial: a prospective randomized study of cardiac resynchronization therapy with preferential adaptive left ventricular-only pacing. Eur J Heart Fail. 2017;19:950–957.
  • Sakamoto T, Kusukawa R, Maccanon DM, et al. hemodynamic determinants of the amplitude of the first heart sound. Circ Res. 1965;16:45–57.
  • Hasan A, Abraham WT, Quinn-Tate L, et al. Optimization of cardiac resynchronization devices using acoustic cardiography: a comparison to echocardiography. Congest Heart Fail. 2006;12(Suppl 1):25–31.
  • Toggweiler S, Zuber M, Kobza R, et al. Improved response to cardiac resynchronization therapy through optimization of atrioventricular and interventricular delays using acoustic cardiography: a pilot study. J Card Fail. 2007;13:637–642.
  • Ovsyshcher I, Gross JN, Blumberg S, et al. Precision of impedance cardiography measurements of cardiac output in pacemaker patients. Pacing Clin Electrophysiol. 1992;15:1923–1926.
  • Rickards AF, Bombardini T, Corbucci G, et al. An implantable intracardiac accelerometer for monitoring myocardial contractility. Pacing Clin Electrophysiol. 1996;19:2066–2071.
  • Gras D, Kubler L, Ritter P, et al. Recording of peak endocardial acceleration in the atrium. Pacing Clin Electrophysiol. 2009;32:S240–S246.
  • Clémenty J. Dual chamber rate responsive pacing system driven by contractility: final assessment after 1-year follow-up. The European PEA Clinical Investigation Group. Pacing Clin Electrophysiol. 1998;21:2192–2197.
  • Butter C, Stellbrink C, Belalcazar A, et al. Cardiac resynchronization therapy optimization by finger plethysmography. Heart Rhythm. 2004;1:568–575.
  • Kyriacou A, Pabari PA, Whinnett ZI, et al. Fully automatable, reproducible, noninvasive simple plethysmographic optimization: proof of concept and potential for implantability. Pacing Clin Electrophysiol. 2012;35:948–960.
  • Finegold J, Bordachar P, Kyriacou A, et al. Atrioventricular delay optimization of cardiac resynchronisation therapy: comparison of non-invasive blood pressure with invasive haemodynamic measures. Int J Cardiol. 2015;180:221–222.
  • Milzman D, Napoli A, Hogan C, et al. Thoracic impedance vs chest radiograph to diagnose acute pulmonary edema in the ED. Am J Emerg Med. 2009;27:770–775.
  • Khan FZ, Virdee MS, Hutchinson J, et al. Cardiac resynchronization therapy optimization using noninvasive cardiac output measurement. Pacing Clin Electrophysiol. 2011;34:1527–1536.
  • Pichlmaier AM, Braile D, Ebner E, et al. Autonomic nervous system controlled closed loop cardiac pacing. Pacing Clin Electrophysiol. 1992;15:1787–1791.
  • Suzuki H, Nodera M, Kamioka M, et al. Intracardiac impedance after cardiac resynchronization therapy is a novel predictor for worsening of heart failure. Heart Vessels. 2017;32:926–931.
  • Sensor Optimization of Cardiac Resynchronization Therapy Response (SOCR) [Internet]. [cited 2017 Aug 2]. Available from: https://clinicaltrials.gov/ct2/show/NCT01832493
  • Auger D, Hoke U, Bax JJ, et al. Effect of atrioventricular and ventriculoventricular delay optimization on clinical and echocardiographic outcomes of patients treated with cardiac resynchronization therapy: a meta-analysis. Am Heart J. 2013;166:20–29.
  • Shanmugam N, Borgulya G, Anderson L. Letter by shanmugam et al regarding article, “primary results from the smartdelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2011;124:e190–e190.
  • Yu C-M, Bleeker GB, Fung JW-H, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112:1580–1586.
  • Mathias A, Moss AJ, McNitt S, et al. Clinical implications of complete left-sided reverse remodeling with cardiac resynchronization therapy. J Am Coll Cardiol. 2016;68:1268–1276.
  • Weiss R, Malik M, Dinerman J, et al. V-V optimization in cardiac resynchronization therapy non-responders: RESPONSE-HF trial results. Heart Rhythm. 2010;7:S26.
  • Boriani G, Biffi M, Müller CP, et al. A prospective randomized evaluation of VV delay optimization in CRT-D recipients: echocardiographic observations from the RHYTHM II ICD study. Pacing Clin Electrophysiol. 2009;32:120–125.
  • Shanmugam N, Prada-Delgado O, Campos AG, et al. Rate-adaptive AV delay and exercise performance following cardiac resynchronization therapy. Heart Rhythm. 2012;9:1815–1821.
  • Oka RK, Stotts NA, Dae MW, et al. Daily physical activity levels in congestive heart failure. Am J Cardiol. 1993;71:921–925.
  • Grimm RA, Sun JP, Agler D, et al. Shorter AV delays provide improved echocardiographic hemodynamics during exercise in patients receiving cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2009;32:457–465.
  • Mokrani B, Lafitte S, Deplagne A, et al. Echocardiographic study of the optimal atrioventricular delay at rest and during exercise in recipients of cardiac resynchronization therapy systems. Heart Rhythm. 2009;6:972–977.
  • Sun JP, Lee AP-W, Grimm RA, et al. Optimisation of atrioventricular delay during exercise improves cardiac output in patients stabilised with cardiac resynchronisation therapy. Heart. 2012;98:54–59.
  • Scharf C, Li P, Muntwyler J, et al. Rate-dependent AV delay optimization in cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2005;28:279–284.
  • Bogaard MD, Kirkels JH, Hauer RNW, et al. Should we optimize cardiac resynchronization therapy during exercise? J Cardiovasc Electrophysiol. 2010;21:1307–1316.
  • Ritzema J, Troughton R, Melton I, et al. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation. 2010;121:1086–1095.
  • Abraham WT, Stevenson LW, Bourge RC, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387:453–461.
  • Calvo N, Arguedas H, Canepa JP, et al. Endocardial left ventricular lead placement from the left subclavian vein approach. Europace. 2014;16:1857–1859.
  • Zanon F, Marcantoni L, Baracca E, et al. Optimization of left ventricular pacing site plus multipoint pacing improves remodeling and clinical response to cardiac resynchronization therapy at 1 year. Heart Rhythm. 2016;13:1644–1651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.