181
Views
8
CrossRef citations to date
0
Altmetric
Review

Peripheral artery disease: the new frontiers of imaging techniques to evaluate the evolution of regenerative medicine

ORCID Icon, , , , & ORCID Icon
Pages 511-532 | Received 25 Feb 2019, Accepted 19 Jun 2019, Published online: 02 Jul 2019

References

  • Peach G, Griffin M, Jones KG, et al. Diagnosis and management of peripheral arterial disease. BMJ (Clin Res Ed). 2012;345(6):e5208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22893640.
  • Criqui MH, Langer RD, Fronek A, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326(6):381–386. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199202063260605.
  • McDermott MMG, Greenland P, Liu K, et al. The ankle brachial index is associated with leg function and physical activity: the walking and leg circulation study. Ann Intern Med. 2002;136(12):873–883. PubMed: 12069561.
  • McDermott MM, Liu K, Ferrucci L, et al. Decline in functional performance predicts later increased mobility loss and mortality in peripheral arterial disease. J Am Coll Cardiol. 2011;57(8):962–970. PubMed: 21329843.
  • McDermott MMG. Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg ischemia. Circ Res. 2015;116(9):1540–1550. PubMed: 25908727.
  • Hamburg NM, Creager MA. Pathophysiology of intermittent claudication in peripheral artery disease. Circ J. 2017;81(3):281–289. PubMed: 28123169.
  • Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease. Int Angiol. 2007;26(2):81–157. PubMed: 17489079.
  • Fowkes FGR, Housley E, Cawood EHH, et al. Edinburgh artery study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int J Epidemiol. 1991;20(2):384–392. PubMed: 1917239.
  • JONASON T, RINGQVIST I. Factors of prognostic importance for subsequent rest pain in patients with intermittent claudication. ActaMedicaScandinavica. 1985;218(1):27–33. PubMed: 4050550.
  • Willigendael EM, Teijink JAW, Bartelink ML, et al. Smoking and the patency of lower extremity bypass grafts: A meta-analysis. J Vasc Surg. 2005;42(1):67–74. PubMed: 16012454.
  • Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–431. PubMed: 15381515.
  • McDaniel MD, Cronenwett JL. Basic data related to the natural history of intermittent claudication. Ann Vasc Surg. 1989;3(3):273–277. PubMed: 2673321.
  • Effect of intensive diabetes management on macrovascular events and risk factors in the diabetes control and complications trial. Am J Cardiol. 1995;75(14):894–903. [PubMed: 7732997].
  • Murabito JM, D’Agostino RB, Silbershatz H, et al. Intermittent claudication: A risk profile from the Framingham Heart Study. Circulation. 1997;96(1):44–49. PubMed: 9236415.
  • Tendera M, Aboyans V, Bartelink ML, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases. Eur Heart J. 2011;32(22):2851–2906. PubMed: 21873417.
  • Novo S. Classification, epidemiology, risk factors, and natural history of peripheral arterial disease. Diabetes Obesity Metab. 2002;4(Suppl 2):S1–6. PubMed: 12180352.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. PubMed: 16904174.
  • Napoli C, Balestrieri A, Ignarro L. Therapeutic approaches in vascular repair induced by adult bone marrow cells and circulating progenitor endothelial cells. Curr Pharm Des. 2007;13(31):3245–3251. PubMed: 18045174.
  • Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–168. PubMed: 10647940.
  • Schulman A. The search for alternative sources of human pluripotent stem cells. Stem Cell Rev. 2005;1(4):291–292. PubMed: 17142869.
  • Wood A. Ethics and embryonic stem cell research. Stem Cell Rev. 2005;1(4):317–324. PubMed: 17142874.
  • Kamm FM. Ethical issues in using and not using embryonic stem cells. Stem Cell Rev. 2005;1(4):325–330. PubMed: 17142875.
  • Baldwin T. Morality and human embryo research. EMBO Rep. 2009;10(4):299–300. PubMed: 19337297.
  • Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–680. PubMed: 18295582.
  • Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation. 2010;122(5):517–526. PubMed: 20679581.
  • Kang L, Kou Z, Zhang Y, et al. Induced pluripotent stem cells (iPSCs)-a new era of reprogramming. J Genet Genome. 2010;37(7):415–421. PubMed: 20659705.
  • Shi Y, Inoue H, Wu JC, et al. Induced pluripotent stem cell technology: A decade of progress. Nat Rev Drug Discov. 2017;16(2):115–130. PubMed: 27980341.
  • Yagi M, Yamanaka S, Yamada Y. Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Lab Invest. 2017 Oct;97:1133–1141. PubMed: 28869587.
  • Tobin SC, Kim K. Generating pluripotent stem cells: differential epigenetic changes during cellular reprogramming. FEBS Lett. 2012;586(18):2874–2881. PubMed: 22819821.
  • Siegel N, Rosner M, Hanneder M, et al. Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev. 2007;3(4):256–264. PubMed: 17955390.
  • Miceli M, Franci G, Dell Aversana C, et al. MePR: a novel human mesenchymal progenitor model with characteristics of pluripotency. Stem Cells Dev. 2013;22(17):2368–2383. 1–51. Available from:: http://www.ncbi.nlm.nih.gov/pubmed/23597129. PubMed: 23597129.
  • Ishikawa F. Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. Faseb J. 2006;20(7):950–952. PubMed: 16585061.
  • Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotentmesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–1675. PubMed:14576065.
  • Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48(6):913–927. PubMed: 10556859.
  • Hoogduijn MJ, Crop MJ, Peeters AMA, et al. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev. 2007;16(4):597–604. PubMed: 17784833.
  • Jordan PM, Ojeda LD, Thonhoff JR, et al. Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res. 2009;87(2):318–332. PubMed: 18803285.
  • Krampera M, Marconi S, Pasini A, et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone. 2007;40(2):382–390. PubMed: 17049329.
  • Holden C, Vogel G. Plasticity: time for a reappraisal? Science. 2002;296(5576):2126–2129. PubMed: 12077383.
  • Rice CM, Scolding NJ. Adult stem cells - Reprogramming neurological repair? Lancet. 2004;16;364(9429):193–199. PubMed: 15246733.
  • Okamoto T, Aoyama T, Nakayama T, et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun. 2002;295(2):354–361. PubMed: 12150956.
  • Takeda Y, Mori T, Imabayashi H, et al. Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med. 2004;6(8):833–845. PubMed: 15293342.
  • Mori T, Kiyono T, Imabayashi H, et al. Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol. 2005;25(12):5183–5195. PubMed: 15923633.
  • Salgado AJ, Gimble JM. Secretome of mesenchymal stem/stromal cells in regenerative medicine. Biochimie. 2013;95(12):2195. PubMed: 24210144.
  • Makridakis M, Roubelakis MG, Vlahou A. Stem cells: insights into the secretome. Biochim Biophys Acta, Proteins Proteomics. 2013;1834(11):2380–2384. PubMed: 23376432.
  • Miceli M, Dell’Aversana C, Russo R, et al. Secretome profiling of cytokines and growth factors reveals that neuro-glial differentiation is associated with the down-regulation of Chemokine Ligand 2 (MCP-1/CCL2) in amniotic fluid derived-mesenchymal progenitor cells. Proteomics. 2016;16(4):674–688. PubMed: 26604074.
  • Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015;82–83:1–11. PubMed: 25451858.
  • Skalnikova H, Motlik J, Gadher SJ, et al. Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics. 2011;11(4):691–708. PubMed: 21241017.
  • Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol. 2012;3:359. PubMed: 22973239.
  • Hou L, Kim JJ, Woo YJ, et al. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol. 2016;310(4):H455–65. PubMed: 26683902.
  • Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov. 2008;7(2):131–142. PubMed: 18079756.
  • Casamassimi A, Grimaldi V, Infante T, et al. Adult stem cells and the clinical arena: are we able to widely use this therapy in patients with chronic limbs arteriopathy and ischemic ulcers without possibility of revascularization? Cardiovasc Hematol Agents Med Chem. 2012;10(2):99–108. PubMed: 22352682.
  • Hematti P, Kim J, Battiwalla M. Mesenchymal stem cells in hematopoietic stem cell transplantation. Stem Cells Hum Dis. 2014;11(5):503–515. PubMed: 19728189.
  • Ryan JM, Barry FP, Murphy JM, et al. Mesenchymal stem cells avoid allogeneic rejection. J Inflam. 2005;2:8. PubMed: 16045800.
  • Napoli C, Maione C, Schiano C, et al. Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends Mol Med. 2007;13(7):278–286. PubMed: 17574919.
  • Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Investig. 2002;118(11):3813. PubMed: 27809420.
  • Napoli C, Hayashi T, Cacciatore F, et al. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis. 2011;215(1):9–22. PubMed: 21126740.
  • Richardson MR, Yoder MC. Endothelial progenitor cells: quo Vadis? J Mol Cell Cardiol. 2011;50(2):266–272. PubMed: 20673769.
  • Lasala GP, Silva JA, Gardner PA, et al. Combination stem cell therapy for the treatment of severe limb ischemia: safety and efficacy analysis. Angiology. 2010;61(6):551–556. PubMed: 20498146.
  • Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg. 2012;144(2):377–382. PubMed: 22079876.
  • Koç ON, Peters C, Aubourg P, et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol. 1999;27(11):1675–1681. PubMed: 10560915.
  • Rieger K, Marinets O, Fietz T, et al. Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp Hematol. 2005;33(5):605–611. PubMed: 15850839.
  • Awaya N, Rupert K, Bryant E, et al. Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Exp Hematol. 2002;30(8):937–942. PubMed: 12160845.
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–736. PubMed: 19172693.
  • Helder MN, Knippenberg M, Klein-Nulend J, et al. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 2007;13(8):1799–1808. PubMed: 17518736.
  • Qayyum AA, Haack-Sørensen M, Mathiasen AB, et al. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012;7(3):421–428. PubMed: 22594332.
  • Pendleton C, Li Q, Chesler DA, et al. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS ONE. 2013;8(3):e58198. PubMed: 23554877.
  • Goodney PP, Beck AW, Nagle J, et al. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60. PubMed: 19481407.
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31. PubMed: 7584949.
  • Folkman J. Therapeutic angiogenesis in ischemic limbs. Circulation. 1998;97(12):1108–1110. PubMed: 9537334.
  • Isner JM. Arterial gene transfer of naked DNA for therapeutic angiogenesis: early clinical results. Adv Drug Deliv Rev. 1998;30(1–3):185–197. PubMed: 10837610.
  • Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112(9):1288–1302. PubMed: 23620237.
  • Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Nat Acad Sci. 2015;112(47):14452–14459. PubMed: 26598661.
  • Barré-Sinoussi F, Montagutelli X. Animal models are essential to biological research: issues and perspectives. Future Sci OA. 2015;1(4):FSO63. PubMed: 28031915.
  • Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res. 2008;50 Suppl:S376–81. PubMed: 19011257.
  • Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein E-deficient mouse: A decade of progress. Arterioscler Thromb Vasc Biol. 2004;24(6):1006–1014. PubMed: 15087308.
  • Upmacis RK, Crabtree MJ, Deeb RS, et al. Profound biopterin oxidation and protein tyrosine nitration in tissues of ApoE-null mice on an atherogenic diet: contribution of inducible nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2007;293(5):H2878–87. PubMed: 17766468.
  • Daugherty A, Cassis L. Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor -/- mice. In. Ann N Y Acad Sci. 1999;892:108–118. PubMed: 10842656.
  • Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Investig. 2000;105(11):1605–1612. PubMed: 10841519.
  • Saraff K, Babamusta F, Cassis LA, et al. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(9):1621–1626. PubMed: 12855482.
  • Baltgalvis KA, White K, Li W, et al. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice. Am J Physiol Heart Circ Physiol. 2014;306(8):H1128–45. PubMED: 24561866.
  • Niiyama H, Huang NF, Rollins MD, et al. Murine Model of Hindlimb Ischemia. J Visualized Exp. . 2009 Jan 21; (23). Pii: 1035. doi: 10.3791 / 1035.
  • Van Weel V, Toes REM, Seghers L, et al. Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol. 2007;27(11):2310–2318. PubMed: 17717295.
  • Couffinhal T, Silver M, Zheng LP, et al. Mouse model of angiogenesis. Am J Pathol. 1998;152(6):1667–1679. PubMed: 9626071.
  • Brenes RA, Jadlowiec CC, Bear M, et al. Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. J Vasc Surg. 2012;56(6):1669–1679. PubMed: 22836102.
  • Behm CZ, Kaufmann BA, Carr C, et al. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation. 2008;117(22):2902–2911. PubMed: 18506006.
  • Hellingman AA, Bastiaansen AJNM, De Vries MR, et al. Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. Eur J Vasc Endovascular Surg. 2010;40(6):796–803. PubMed: 20705493.
  • Tang GL, Chang DS, Sarkar R, et al. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg. 2005;41(2):312–320. PubMed: 15768015.
  • McGuigan MRM, Bronks R, Newton RU, et al. Muscle fiber characteristics in patients with peripheral arterial disease. Med Sci Sports Exerc. 2001;33(12):2016–2021. PubMed: 11740293.
  • Yang Y, Tang G, Yan J, et al. Cellular and molecular mechanism regulating blood flow recovery in acute versus gradual femoral artery occlusion are distinct in the mouse. J Vasc Surg. 2008;48(6):1546–1558. PubMed: 19118738.
  • Baffour R, Garb JL, Kaufman J, et al. Angiogenic therapy for the chronically ischemic lower limb in a rabbit model. J Surg Res. 2000;93(2):219–229. PubMed: 11027464.
  • Hazarika S, Dokun AO, Li Y, et al. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res. 2007;101(9):948–956. PubMed: 17823371.
  • Van Weel V, De Vries M, Voshol PJ, et al. Hypercholesterolemia reduces collateral artery growth more dominantly than hyperglycemia or insulin resistance in mice. Arterioscler Thromb Vasc Biol. 2006;26(6):1383–1390. PubMed: 16574899.
  • Shimada T, Takeshita Y, Murohara T, et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004;110(9):1148–1155. PubMed: 15302783.
  • Faber JE, Zhang H, Lassance-Soares RM, et al. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol. 2011;31(8):1748–1756. PubMed: 21617137.
  • Peng X, Wang J, Lassance-Soares RM, et al. Gender differences affect blood flow recovery in a mouse model of hindlimb ischemia. Am J Physiol Heart Circ Physiol. 2011;300(6):H2027–34. PubMed: 21398592.
  • Shireman PK, Quinones MP. Differential necrosis despite similar perfusion in mouse strains after ischemia. J Surg Res. 2005;129(2):242–250. [PubMed; 16051277].
  • Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–967. PubMed: 9020076.
  • Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation. 2001;103(6):897–903. PubMed: 11171801.
  • Kobayashi K, Kondo T, Inoue N, et al. Combination of in vivo angiopoietin-1 gene transfer and autologous bone marrow cell implantation for functional therapeutic angiogenesis. Arterioscler Thromb Vasc Biol. 2006;26(7):1465–1472. PubMed: 16645159.
  • Jeon O, Su JS, Suk HB, et al. Additive effect of endothelial progenitor cell mobilization and bone marrow mononuclear cell transplantation on angiogenesis in mouse ischemic limbs. J Biomed Sci. 2007;14(3):323–330. PubMed: 17265168.
  • Zhang H, Zhang N, Li M, et al. Therapeutic angiogenesis of bone marrow mononuclear cells (MNCs) and peripheral blood MNCs: transplantation for ischemic hindlimb. Ann Vasc Surg. 2008;22(2):238–247. PubMed: 18083329.
  • Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–1549. PubMed: 15023891.
  • Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678–685. PubMed: 14739163.
  • Napoli C, Farzati B, Sica V, et al. Beneficial effects of autologous bone marrow cell infusion and antioxidants/L-arginine in patients with chronic critical limb ischemia. Eur J Cardiovasc Prev Rehabil. 2008;15(6):709–718. PubMed: 19050436.
  • Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–435. PubMed: 12241713.
  • Kajiguchi M, Kondo T, Izawa H, et al. Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J. 2007;71(2):196–201. PubMed: 17251666.
  • Botham CM, Bennett WL, Cooke JP. Clinical trials of adult stem cell therapy for peripheral artery disease. Methodist Debakey Cardiovasc J. 2013;9(4):201–205. PubMed: 24298310.
  • Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease. Meta-analysis and systematic review of the literature. Atherosclerosis. 2010;209(1):10–17. PubMed: 19740466.
  • vanTongeren RB, Hamming JF, Fibbe WE, et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: A clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg. 2008;49(1):51–58. PubMed: 18212687.
  • Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia a randomized-start, placebo-controlled pilot trial (PROVASA). Circulation: Cardiovasc Interventions. 2011;4(1):26–37. PubMed: 21205939.
  • Iafrati MD, Hallett JW, Geils G, et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg. 2011;54(6):1650–1658. PubMed: 22019148.
  • Huang P, Li S, Han M, et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–2160. PubMed: 16123483.
  • Mohammadzadeh L, Samedanifard SH, Keshavarzi A, et al. Therapeutic outcomes of transplanting autologous granulocyte colony-stimulating factor-mobilised peripheral mononuclear cells in diabetic patients with critical limb ischaemia. Exp Clin Endocrinol Diabetes. 2013;121(1):48–53. PubMed: 23329572.
  • Ozturk A, Kucukardali Y, Tangi F, et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complications. 2012;26(1):29–33. PubMed: 22240264.
  • Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. PubMed: 22336189.
  • Bartsch T, Brehm M, Zeus T, et al. Autologous mononuclear stem cell transplantation in patients with peripheral occlusive arterial disease. J Cardiovasc Nurs. 2006;21(6):430–432. PubMed: 17293730.
  • Lüdemann CRatei R, et al. Autologous bone-marrow stem-cell transplantation for induction of arteriogenesis for limb salvage in critical limb ischaemia. Zentralbl Chir. 2009;134(4):298–304.
  • Chochola M, Pytlík R, Kobylka P, et al. Autologous intra-arterial infusion of bone marrow mononuclear cells in patients with critical leg ischemia. Int Angiology. 2008;27(4):281–290. PubMed: 18677289.
  • Idei N, Soga J, Hata T, et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia : A comparison of atherosclerotic peripheral arterial disease and buerger disease. Circulation: Cardiovasc Interventions. 2011;4(1):15–25. PubMed: 21205941.
  • Lara-Hernandez R, Lozano-Vilardell P, Blanes P, et al. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg. 2010;24(2):287–294. PubMed: 20142004.
  • Miyamoto K, Nishigami K, Nagaya N, et al. Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitisobliterans. Circulation. 2006;20(1):100–102. PubMed: 18403473.
  • Sprengers RW, Teraa M, Moll FL, et al. Quality of life in patients with no-option critical limb ischemia underlines the need for new effective treatment. J Vasc Surg. 2010;52(4):843–9, 849.e1. PubMed: 20598482.
  • Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb Ischemia. Cell Transplant. 2011;20(10):1629–1639. PubMed: 22289660.
  • Franz RW, Parks A, Shah KJ, et al. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J Vasc Surg. 2009;50(6):1378–1390. PubMed: 19837539.
  • Franz RW, Shah KJ, Johnson JD, et al. Short- to mid-term results using autologous bone-marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. Vasc Endovascular Surg. 2011;45(5):398–406. PubMed: 21669864.
  • Franz RW, Shah KJ, Pin RH, et al. Autologous bone marrow mononuclear cell implantation therapy is an effective limb salvage strategy for patients with severe peripheral arterial disease. J Vasc Surg. 2015;62(3):673–680. PubMed: 26304481.
  • Bartsch T, Brehm M, Zeus T, et al. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (TheTAM-PAD study). Clin Res Cardiol. 2007;96(12):891–899. PubMed: 17694378.
  • Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–143. PubMed: 20017699.
  • Jang YY, Ye Z, Cheng L. Molecular imaging and stem cell research. Mol Imaging. 2011;10(2):111–122. PubMed: 21439256.
  • Grimaldi V, Schiano C, Casamassimi A, et al. Imaging techniques to evaluate cell therapy in peripheral artery disease: state of the art and clinical trials. Clin Physiol Funct Imaging. 2016;36(3):165–178. PubMed: 25385089.
  • Sahli D, Eriksson JW, Boman K, et al. Tissue plasminogen activator (tPA) activity is a novel and early marker of asymptomatic LEAD in type 2 diabetes. Thromb Res. 2009;123(5):701–706. PubMed: 18945481.
  • Okamoto S, Iida O, Nakamura M, et al. Postprocedural skin perfusion pressure correlates with clinical outcomes 1 year after endovascular therapy for patients with critical limb ischemia. Angiology. 2015;66(9):862–866. PubMed: 25653244.
  • Yamada T, Ohta T, Ishibashi H, et al. Clinical reliability and utility of skin perfusion pressure measurement in ischemic limbs-Comparison with other noninvasive diagnostic methods. J Vasc Surg. 2008;47(2):318–323. PubMed: 18241755.
  • Lo T, Sample R, St A, et al. Prediction of wound healing outcome using skin perfusion pressure and transcutaneous oximetry: a single-center experience in 100 patients. Wounds. 2009;21(11):310–316. PubMed: 25902775.
  • Adera HM, James K, Castronuovo JJ, et al. Prediction of amputation wound healing with skin perfusion pressure. J Vasc Surg. 1995;21(5):823–828. PubMed: 7769741.
  • Castronuovo J, Adera HM, Smiell JM, et al. Skin perfusion pressure measurement is valuable in the diagnosis of critical limb ischemia. J Vasc Surg. 1997;26(4):629–637. PubMed: 9357464.
  • Bradbury AW, Adam DJ. Diagnosis of peripheral arterial disease of the lower limb. Br Med J. 2007;334(7606):1229–1230. PubMed: 17569893.
  • Thukkani AK, Kinlay S. Endovascular intervention for peripheral artery disease. Circ Res. 2015;116(9):1599–1613. PubMed: 25908731.
  • Osborn EA, Jaffer FA. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imaging. 2013;6(12):1327–1341. PubMed: 24332285.
  • Brack SS, Dinkelborg LM, Neri D. Molecular targeting of angiogenesis for imaging and therapy. Eur J Nucl Med Mol Imaging. 2004;31(9):1327–1341. PubMed: 15300415.
  • Ly HQ, Frangioni JV, Hajjar RJ. Imaging in cardiac cell-based therapy: in vivo tracking of the biological fate of therapeutic cells. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S96–102. PubMed: 18641613.
  • Leong-Poi H. Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy. Cardiovasc Res. 2009;84(2):190–200. PubMed: 19628466.
  • Franz R, Jump M, Spalding MC, et al. Accuracy of duplex ultrasonography in estimation of severity of peripheral vascular disease. Int J Angiology. 2013;22(3):155–158. PubMed: 24436603.
  • AbuRahma AF, Elmore M, Deel J, et al. Complications of diagnostic arteriography performed by a vascular surgeon in a recent series of 558 patients. Vascular. 2007;15(2):92–97. PubMed: 17481370.
  • Nederkoorn PJ, Van Der Graaf Y, Hunink MGM. Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: A systematic review. Stroke. 2003;34(5):1324–1332. PubMed: 12690221.
  • Shrikhande GV, Graham AR, Aparajita R, et al. Determining criteria for predicting stenosis with ultrasound duplex after endovascular intervention in infrainguinal lesions. Ann Vasc Surg. 2011;25(4):454–460. PubMed: 21549912.
  • McCullough PA, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465-1473.
  • Tang GL, Chin J, Kibbe MR. Advances in diagnostic imaging for peripheral arterial disease. Expert Rev Cardiovasc Ther. 2010;8(10):1447–1455. PubMed: 20936931.
  • Elgzyri T, Ekberg G, Peterson K, et al. Can duplex arterial ultrasonography reduce unnecessary angiography? J Wound Care. 2008;17(11):497–500. PubMed: 18978689.
  • Leiner T, Kessels AGH, Nelemans PJ, et al. Peripheral arterial disease: comparison of color duplex US and contrast-enhanced MR angiography for diagnosis. Radiology. 2005;235(2):699–708. PubMed: 15858107.
  • Favaretto E, Pili C, Amato A, et al. Analysis of agreement between Duplex ultrasound scanning and arteriography in patients with lower limb artery disease. J Cardiovasc Med. 2007;8(5):337–341. PubMed: 17443099.
  • Aboyans V, Ricco JB. The 2017 ESC guidelines on PADs: what’s new? Eur Heart J. 2018;39(9):720–729. PubMed: 29506062.
  • Coffi SB, Ubbink DT, Zwiers I, et al. Contrast-enhanced duplex scanning of crural arteries by means of continuous infusion of Levovist. J Vasc Surg. 2004;39(3):517–522. PubMed:14981441.
  • Loewe C, Schoder M, Rand T, et al. Peripheral vascular occlusive disease: evaluation with contrast-enhanced moving-bed MR angiography versus digital subtraction angiography in 106 patients. Am J Roentgenol. 2002;179(4):1013–1021. PubMed: 12239057.
  • Adriaensen MEAPM, Kock MCJM, Stijnen T, et al. Peripheral arterial disease: therapeutic confidence of CT versus digital subtraction angiography and effects on additional imaging recommendations. Radiology. 2004;233(2):385–391. PubMed: 15358853.
  • Eslami MH, Csikesz N, Schanzer A, et al. Peripheral arterial interventions: trends in market share and outcomes by specialty, 1998-2005. J Vasc Surg. 2009;50(5):1071–1078. PubMed: 19703759.
  • Kerns SR, E Hawkins IF. Carbon dioxide digital subtraction angiography: expanding applications and technical evolution. Am J Roentgenol. 1995;164(3):735–741. PubMed: 7863904.
  • Scalise F, Novelli E, Auguadro C, et al. Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography. J Invasive Cardiol. 2015;27(1):20–26. PubMed: 25589696.
  • Cho KJ. Carbon Dioxide Angiography: scientific Principles and Practice. Vasc Specialist Int. 2015;31(3):67–80. PubMed: 26509137.
  • Emily VM Ward, Asad A Usman, Philip A Hodnett, et al. Ankle-brachial index (ABI) and quiescent-interval single shot (QISS) MRA in peripheral arterial disease (PAD): comparison of diagnostic accuracy and need for additional imaging procedures. J Cardiovasc Magn Reson. 2011;13(Suppl 1): P391.
  • Koelemay MJW, Legemate DA, Reekers JA, et al. Interobserver variation in interpretation of arteriography and management of severe lower leg arterial disease. Eur J Vasc Endovascular Surg. 2001;21(5):417–422. PubMed: 11352516.
  • Dorweiler B, Neufang A, Schmiedt W, et al. Pedal arterial bypass for limb salvage in patients with diabetes mellitus. Eur J Vasc Endovascular Surg. 2002;24(4):309–313. PubMed: 12323173.
  • Otal H, Takasel K, Igarashi K, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. Am J Roentgenol. 2004;182(1):201–209. PubMed: 14684540.
  • Englund EK, Langham MC, Ratcliffe SJ, et al. Multiparametric assessment of vascular function in peripheral artery disease: dynamic measurement of skeletal muscle perfusion, blood-oxygen-level dependent signal, and venous oxygen saturation. Cir Cardiovasc Imaging. 2015;8(4):pii: e002673. PubMed: 25873722.
  • Markl M, Harloff A, Bley TA, et al. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging. 2007;25(4):824–831. PubMed: 17345635.
  • Frydrychowicz A, Winterer JT, Zaitsev M, et al. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. J Magn Reson Imaging. 2007;25(5):1085–1092. PubMed: 17427916.
  • Kraitchman DL, Bulte JWM. Imaging of stem cells using MRI. Basic Res Cardiol. 2008;103(2):105–113. PubMed: 18324366.
  • Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003;30(8):889–895. PubMed: 14698793.
  • Berry CC, Wells S, Charles S, et al. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials. 2004;25(23):5405–5413. PubMed: 15130725.
  • Jakobs TF, Wintersperger BJ, Becker CR. MDCT-imaging of peripheral arterial disease. Semin Ultrasound CT MR. 2004;25(2):145–155. PubMed: 15160795.
  • Almutairi A, Sun Z, Poovathumkadavi A, et al. Dual energy CT angiography of peripheral arterial disease: feasibility of using lower contrast medium volume. PLoS ONE. 2015;10(12):e0145976. PubMed: 26699728.
  • Brockmann C, Jochum S, Sadick M, et al. Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc Intervent Radiol. 2009;32(4):630–637. PubMed: 19130122.
  • Almutairi A, Sun Z. Dual energy computed tomography angiography in the peripheral arterial imaging: A systematic review of image quality, radiation dose and diagnostic value. Curr Med Imaging Rev. 2016; 13(1): 66–72.
  • Tanaka R, Yoshioka K, Takagi H, et al. Novel developments in non-invasive imaging of peripheral arterial disease with CT: experience with state-of-the-art, ultra-high-resolution CT and subtraction imaging. Clin Radiol. 2018;74(1):51–58. PubMed: 29627067.
  • Vaidyanathan S, Patel CN, Scarsbrook AF, et al. FDG PET/CT in infection and inflammation - Current and emerging clinical applications. Clin Radiol. 2015;70(7):787–800. PubMed: 25917543.
  • Murphy MP, Lawson JH, Rapp BM, et al. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg. 2011;53(6):1565–74.e1. PubMed: 21514773.
  • Tawakol A, Migrino RQ, Hoffmann U, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12(3):294–301. PubMed: 15944534.
  • A. T, R.Q. M, G.G. B, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–1824. PubMed: 17084256.
  • Rudd JHF, Myers KS, Bansilal S, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49(6):871–878. PubMed: 18483100.
  • Pomper MG, Hammond H, Yu X, et al. Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res. 2009;19(3):370–379. PubMed: 19114988.
  • Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–2202. PubMed: 15851598.
  • Yaghoubi SS, Jensen MC, Satyamurthy N, et al. Noninvasive detection of therapeutic cytolytic T cells with 18 F-FHBG PET in a patient with glioma. Nature Clin Pract Oncol. 2009;6(1):53–58. PubMed: 19015650.
  • Undale AH, Westendorf JJ, Yaszemski MJ, et al. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84(10):893–902. PubMed: 19797778.
  • O’Brien T, Barry FP. Stem cell therapy and regenerative medicine. Mayo Clin Proc. 2009;84(10):859–861. PubMed: 19797773.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.