1,229
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel diagnostic and imaging techniques in endovascular iliac artery procedures

ORCID Icon, , , , , & show all
Pages 395-404 | Received 19 Feb 2020, Accepted 08 Jun 2020, Published online: 19 Jul 2020

References

  • Zeller T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc Med. 2007;12:223–234.
  • Moniz E. L’encephalographie arterielle, son importance dans la localisation des tumeurs cerebrales. Rev Neurol. 1927;2:72.
  • Aboyans V, Ricco J-B, Bartelink M-LE-L, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)the task force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39:763–816.
  • Wikström J, Holmberg A, Johansson L, et al. Gadolinium-enhanced magnetic resonance angiography, digital subtraction angiography and duplex of the iliac arteries compared with intra-arterial pressure gradient measurements. Eur J Vasc Endovasc Surg. 2000;19:516–523.
  • Legemate DA, Teeuwen C, Hoeneveld H, et al. Value of duplex scanning compared with angiography and pressure measurement in the assessment of aortoiliac arterial lesions. Br J Surg. 1991;78:1003–1008.
  • Bosch JL, Tetteroo E, Mali WP, et al. Iliac arterial occlusive disease: cost-effectiveness analysis of stent placement versus percutaneous transluminal angioplasty. Dutch iliac stent trial study group. Radiology. 1998;208:641–648.
  • Heinen SGH, van den Heuvel DAF, Huberts W, et al. In vivo validation of patient-specific pressure gradient calculations for iliac artery stenosis severity assessment [Internet]. J Am Heart Assoc. 2017;6. DOI:10.1161/jaha.117.007328.
  • Morris PD, Silva Soto DA, Feher JFA, et al. Fast virtual fractional flow reserve based upon steady-state computational fluid dynamics analysis: results from the VIRTU-fast study. JACC Basic Transl Sci. 2017;2:434–446.
  • Papafaklis MI, Muramatsu T, Ishibashi Y, et al. Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire - fractional flow reserve. EuroIntervention. 2014;10:574–583.
  • Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol. 2014;63:1145–1155.
  • Heinen SGH, van den Heuvel DAF, de Vries JPPM, et al. A geometry-based model for non-invasive estimation of pressure gradients over iliac artery stenoses. J Biomech. 2019;92:67–75.
  • European Society of Radiology (ESR). White paper on radiation protection by the European society of radiology. Insights Imaging. 2011;2:357–362.
  • American College of Radiology. Radiation protection protocols [Internet]. [ cited 2019 Dec 17]. Available from: https://www.acr.org/Clinical-Resources/Radiology-Safety/Radiation-Safety
  • Committee on Drugs and Contrast Media. American College of Radiology (ACR) manual on contrast media, version 10.3 [Internet]. [ cited 2019 Dec 17]. Available from: http://www.acr.org/quality-safety/resources/contrast-manual
  • European Society of Urogenital Radiology. ESUR guidelines on contrast media, version 10.0; 2018 Mar [ Internet]. [cited 2019 Dec 17]. Available from: http://www.esur.org/esur-guidelines/
  • Solomon R, Dumouchel W. Contrast media and nephropathy: findings from systematic analysis and food and drug administration reports of adverse effects. Invest Radiol. 2006;41:651–660.
  • Brooks CE, Middleton A, Dhillon R, et al. Predictors of creatinine rise post-endovascular abdominal aortic aneurysm repair [Internet]. ANZ J Surg. 2011;81:827–830.
  • Kawatani Y, Nakamura Y, Mochida Y, et al. Contrast medium induced nephropathy after endovascular stent graft placement: an examination of its prevalence and risk factors [Internet]. Radiol Res Pract. 2016;2016:1–5.
  • Dijkstra ML, Eagleton MJ, Greenberg RK, et al. Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg. 2011;53:583–590.
  • Kobeiter H, Nahum J, Becquemin J-P. Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation. 2011;124:e280–e282.
  • Sadek M, Berland TL, Maldonado TS, et al. Use of preoperative magnetic resonance angiography and the artis zeego fusion program to minimize contrast during endovascular repair of an iliac artery aneurysm [Internet]. Ann Vasc Surg. 2014;28:261.e1–e261.e5.
  • Sailer AM, de Haan MW, Peppelenbosch AG, et al. CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2014;47:349–356.
  • Van Herwaarden JA Pre-clinical results of a 3D navigation innovation: fiber optic realShape (FORS) technology [Internet]. [ cited 2018 Oct 29–30]. Available from: https://www.aortic-live.com/wp-content/uploads/2018/11/1740_v-Herwaarden-Aortic-Live-2018_201018_Approved-NEWLpic.pdf
  • van Herwaarden JA Innovation in 3D navigation: results from the FORS - fiber optic realShape first-in-human clinical study [Internet]; 2019. Available from: https://linc2019.cncptdlx.com/media/20190122_LINC_FINAL_JvH_PRESENTED.pdf
  • van Herwaarden JA Modern imaging systems will revolutionize EVAR techniques [Internet]; 2020. Available from: https://linc2020.cncptdlx.com/media/van%20Herwaarden_LINC2020.pdf
  • Franz AM, Haidegger T, Birkfellner W, et al. Electromagnetic tracking in medicine–a review of technology, validation, and applications. IEEE Trans Med Imaging. 2014;33:1702–1725.
  • Jens S, Koelemay MJW, Reekers JA, et al. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013;23:3104–3114.
  • Met R, Bipat S, Legemate DA, et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301:415–424.
  • Visser K, Hunink MGM. Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US—a meta-analysis. Radiology. 2000;216:67–77.
  • Menke J, Larsen J. Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease. Ann Intern Med. 2010;153:325–334.
  • Koelemay MJ, den Hartog D, Prins MH, et al. Diagnosis of arterial disease of the lower extremities with duplex ultrasonography. Br J Surg. 1996;83:404–409.
  • Pollak AW, Norton PT, Kramer CM. Multimodality imaging of lower extremity peripheral arterial disease: current role and future directions. Circ Cardiovasc Imaging. 2012;5:797–807.
  • Zhang H, Prince MR. Improving interpretation of MRA and CTA in patients with suspected renal artery stenosis. Vascular Dis Manage. 2011;8:E34–E37.
  • May AG, de Weese JA, Rob CG. Hemodynamic effects of arterial stenosis. Surgery. 1963;53:513–524.
  • Berguer R, Hwang NH. Critical arterial stenosis: a theoretical and experimental solution. Ann Surg. 1974;180:39–50.
  • May AG, Van de Berg L, Deweese JA, et al. Critical arterial stenosis. Surgery. 1963;54:250–259.
  • Klein WM, van der Graaf Y, Seegers J, et al. Dutch iliac stent trial: long-term results in patients randomized for primary or selective stent placement. Radiology. 2006;238:734–744.
  • Tetteroo E, van der Graaf Y, Bosch JL, et al. Randomised comparison of primary stent placement versus primary angioplasty followed by selective stent placement in patients with iliac-artery occlusive disease. Lancet. 1998;351:1153–1159.
  • Breslau PJ, Jörning PJ, Greep JM. Assessment of aortoiliac disease using hemodynamic measures. Arch Surg. 1985;120:1050–1052.
  • Kinney TB, Rose SC. Intraarterial pressure measurements during angiographic evaluation of peripheral vascular disease: techniques, interpretation, applications, and limitations. AJR Am J Roentgenol. 1996;166:277–284.
  • Moore WS, Malone JM. Effect of flow rate and vessel calibre on critical arterial stenosis. J Surg Res. 1979;26:1–9.
  • Udoff EJ, Barth KH, Harrington DP, et al. Hemodynamic significance of iliac artery stenosis: pressure measurements during angiography. Radiology. 1979;132:289–293.
  • Heinen SG, de Boer SW, van den Heuvel DA, et al. Hemodynamic significance assessment of equivocal iliac artery stenoses by comparing duplex ultrasonography with intra-arterial pressure measurements. J Cardiovasc Surg. 2018;59:37–44.
  • Fischer JJ, Samady H, McPherson JA, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90:210–215.
  • Tetteroo E, van Engelen AD, Spithoven JH, et al. Stent placement after iliac angioplasty: comparison of hemodynamic and angiographic criteria. Dutch iliac stent trial study group. Radiology. 1996;201:155–159.
  • Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. [ Internet]. 2019. DOI:10.1093/eurheartj/ehz425.
  • Bosch JL, Hunink MG. Meta-analysis of the results of percutaneous transluminal angioplasty and stent placement for aortoiliac occlusive disease. Radiology. 1997;204:87–96.
  • Westra J, Tu S, Winther S, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (Wire-free functional imaging II). Circ Cardiovasc Imaging. 2018;11:e007107.
  • Tu S, Westra J, Yang J, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography [Internet]. JACC Cardiovasc Interv. 2016;2024–2035. DOI:10.1016/j.jcin.2016.07.013.
  • Xu B, Tu S, Qiao S, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis [Internet]. J Am Coll Cardiol. 2017;70:3077–3087.
  • Douglas PS, De Bruyne B, Pontone G, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol. 2016;68:435–445.
  • Dodds SR. The haemodynamics of asymmetric stenoses. Eur J Vasc Endovasc Surg. 2002;24:332–337.
  • Heinen S, Gashi K, van den Heuvel D, et al. A metamodeling approach for instant severity assessment and uncertainty quantification of iliac artery stenoses. J Biomech Eng. [ Internet]. 2019. DOI:10.1115/1.4044502.
  • Lee J-G, Ko J, Hae H, et al. Intravascular ultrasound-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions [Internet]. Atherosclerosis. 2020;292:171–177.
  • Cho H, Lee J-G, Kang S-J, et al. Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions. J Am Heart Assoc. 2019;8:e011685.
  • Mitchell T. Machine learning. New York, NY: McGraw-Hill; 1997. ISBN: 0070428077.
  • De Silva T, Punnoose J, Uneri A, et al. Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction. J Med Imaging (Bellingham). 2018;5:015005.
  • Agarwal S, Parashar A, Bajaj NS, et al. Relationship of beam angulation and radiation exposure in the cardiac catheterization laboratory. JACC Cardiovasc Interv. 2014;7:558–566.
  • Schueler BA, Vrieze TJ, Bjarnason H, et al. An investigation of operator exposure in interventional radiology. Radiographics. 2006;26:1533–1541. . discussion 1541.
  • Schulz CJ, Schmitt M, Böckler D, et al. Feasibility and accuracy of fusion imaging during thoracic endovascular aortic repair. J Vasc Surg. 2016;63:314–322.
  • van den Berg JC. Update on new tools for three-dimensional navigation in endovascular procedures. Aorta (Stamford). 2014;2:279–285.
  • Sailer AM, Schurink GWH, Wildberger JE, et al. Radiation exposure of abdominal cone beam computed tomography. Cardiovasc Intervent Radiol. 2015;38:112–120.
  • Toth D, Pfister M, Maier A, et al. Adaption of 3D models to 2D X-ray images during endovascular abdominal aneurysm repair. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Munich, Germany: Springer International Publishing; 2015. p. 339–346.
  • Lessard S, Kauffmann C, Pfister M, et al. Automatic detection of selective arterial devices for advanced visualization during abdominal aortic aneurysm endovascular repair. Med Eng Phys. 2015;37:979–986.
  • Varnavas A, Carrell T, Penney G. Fully automated 2D-3D registration and verification. Med Image Anal. 2015;26:108–119.
  • Modarai B Podium 1st: new developments in fusion imaging - artificial intelligence that deforms anatomy to maintain accuracy [Internet]; 2019. Available from: https://youtu.be/Yq9f-_YR43U
  • Southerland KW, Nag U, Turner M, et al. IF09. Image-based three-dimensional fusion computed tomography decreases radiation exposure, fluoroscopy time, and procedure time during endovascular aortic aneurysm repair. J Vasc Surg. 2018;67:e61.
  • Buckley CJ, Arko FR, Lee S, et al. Intravascular ultrasound scanning improves long-term patency of iliac lesions treated with balloon angioplasty and primary stenting. J Vasc Surg. 2002;35:316–323.
  • Kumakura H, Kanai H, Araki Y, et al. 15-year patency and life expectancy after primary stenting guided by intravascular ultrasound for iliac artery lesions in peripheral arterial disease. JACC Cardiovasc Interv. 2015;8:1893–1901.
  • Goudeketting SR, Heinen SGH, de Haan MW, et al. Fluoroscopy with MRA fusion image guidance in endovascular iliac artery interventions: study protocol for a randomized controlled trial (3DMR-Iliac-roadmapping study). Trials. 2018;19:603.
  • van der Molen AJ, Reimer P, Dekkers IA, et al. Post-contrast acute kidney injury - Part 1: definition, clinical features, incidence, role of contrast medium and risk factors: recommendations for updated ESUR contrast medium safety committee guidelines. Eur Radiol. 2018;28:2845–2855.
  • Jens S, Schreuder SM, De Boo DW, et al. Lowering iodinated contrast concentration in infrainguinal endovascular interventions: a three-armed randomized controlled non-inferiority trial. Eur Radiol. 2016;26:2446–2454.
  • McNally MM, Scali ST, Feezor RJ, et al. Three-dimensional fusion computed tomography decreases radiation exposure, procedure time, and contrast use during fenestrated endovascular aortic repair. J Vasc Surg. 2015;61:309–316.
  • Philips Medical Systems Nederland B.V. AltaTrack - table side launch base instructions for use [Internet]. [ cited 2019 Dec 29]. Available from: https://fcc.report/FCC-ID/2AQ4B-432207025350
  • de Lambert A, Esneault S, Lucas A, et al. Electromagnetic tracking for registration and navigation in endovascular aneurysm repair: a phantom study. Eur J Vasc Endovasc Surg. 2012;43:684–689.
  • Schwein A, Kramer B, Chinnadurai P, et al. Electromagnetic tracking of flexible robotic catheters enables “assisted navigation” and brings automation to endovascular navigation in an in vitro study. J Vasc Surg. 2018;67:1274–1281.
  • Solomon SB, Magee CA, Acker DE, et al. Experimental nonfluoroscopic placement of inferior vena cava filters: use of an electromagnetic navigation system with previous CT data. J Vasc Interv Radiol. 1999;10:92–95.
  • Schwein A, Kramer B, Chinnadurai P, et al. Flexible robotics with electromagnetic tracking improves safety and efficiency during in vitro endovascular navigation. J Vasc Surg. 2017;65:530–537.
  • Wood BJ, Zhang H, Durrani A, et al. Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol. 2005;16:493–505.
  • Goode SD, Keltie K, Burn J, et al. Effect of procedure volume on outcomes after iliac artery angioplasty and stenting. Br J Surg. 2013;100:1189–1196.
  • de Boer SW, Heinen S, van den Heuvel D, et al. How to define the hemodynamic significance of an equivocal iliofemoral artery stenosis: review of literature and outcomes of an international questionnaire. Vascular. 2017;25:598–608.
  • Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. 1991;11:88–94.
  • Ketteler ER, Brown KR. Radiation exposure in endovascular procedures. J Vasc Surg. 2011;53:35S– 38S.
  • Majewska N, Blaszak MA, Juszkat R, et al. Patients’ radiation doses during the implantation of stents in carotid, renal, iliac, femoral and popliteal arteries. Eur J Vasc Endovasc Surg. 2011;41:372–377.
  • El-Sayed T, Patel AS, Cho JS, et al. Radiation-induced DNA damage in operators performing endovascular aortic repair. Circulation. 2017;136:2406–2416.
  • Horsky J. Cognitive behavior and clinical workflows. In: Zheng K, Westbrook J, Kannampallil TG, et al., editors. Cognitive informatics reengineering clinical workflow for safer and more efficient care. Berlin, Germany: Springer International Publishing. 2019; p. 9–29.
  • Manske CL, Sprafka JM, Strony JT, et al. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990;89:615–620.
  • Cigarroa RG, Lange RA, Williams RH, et al. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86:649–652.
  • Laskey WK, Jenkins C, Selzer F, et al. Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol. 2007;50:584–590.
  • Gurm HS, Dixon SR, Smith DE, et al. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011;58:907–914.
  • Yoon H-J, Hur S-H. Determination of safe contrast media dosage to estimated glomerular filtration rate ratios to avoid contrast-induced nephropathy after elective percutaneous coronary intervention. Korean Circ J. 2011;41:265–271.