512
Views
10
CrossRef citations to date
0
Altmetric
Review

Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments

, , , , , , , & show all
Pages 681-696 | Received 14 May 2020, Accepted 03 Jul 2020, Published online: 23 Sep 2020

References

  • Iung B, Vahanian A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol. 2011;8:162–172.
  • Alsoufi B, Cheung DY, Duan B, et al. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15:1155–1172.
  • Schoen FJ, Gotlieb AI. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective. Cardiovasc Pathol. 2016;25:341–352.
  • Schoen FJ. Morphology, clinicopathologic correlations, and mechanisms in heart valve health and disease. Cardiovasc Eng Technol. 2018;9:126–140.
  • Baumgartner H, Falk V, Bax JJ, et al. ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017 Sep 21;38(36):2739–2791. DOI:10.1093/eurheartj/ehx391
  • Guo MH, Boodhwani M. Aortic valve repair: from concept to future targets. Semin Thorac Cardiovasc Surg. 2019;31:650–655.
  • Al-Adhami A, Al-Attar N. Recent advances in aortic valve replacement for aortic stenosis. F1000Res. 2016;5:2542.
  • Ramlawi B, Ramchandani M, Reardon M. Surgical approaches to aortic valve replacement and repair-insights and challenges outcomes for minimally invasive surgical aortic valve replacement. Interv Cardiol Rev. 2014 Mar;9(1):DOI:10.15420/icr.2011.9.1.32.
  • Lisy M, Kalender G, Schenke-Layland K, et al. Allograft heart valves: current aspects and future applications. Biopreserv Biobank. 2017;15:148–157.
  • Delmo Walter EM, de By TMMH, Meyer R, et al. The future of heart valve banking and of homografts: perspective from the Deutsches Herzzentrum Berlin. HSR Proc Intensive Care Cardiovasc Anesth. 2012;4:97–108.
  • Roh JD, Sawh-Martinez R, Brennan MP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010;107:4669–4674.
  • Tam DY, Wijeysundera HC, Ouzounian M, et al. The ross procedure versus mechanical aortic valve replacement in young patients: a decision analysis. Eur J Cardiothorac Surg. 2019;55:1180–1186.
  • Mazine A, David TE, Rao V, et al. Long-term outcomes of the ross procedure versus mechanical aortic valve replacement. Circulation. 2016;134:576–585.
  • Soliman Hamad MA, van Eekelen E, van Agt T, et al. Self-management program improves anticoagulation control and quality of life: a prospective randomized study. Eur J Cardiothorac Surg. 2009;35:265–269.
  • Nishimura RA, Warnes CA. Anticoagulation during pregnancy in women with prosthetic valves: evidence,guidelines and unanswered questions. Heart. 2015;101:430–435.
  • Head SJ, Çelik M, Kappetein AP. Mechanical versus bioprosthetic aortic valve replacement. Eur Heart J. 2017;38:2183–2191.
  • Costa G, Criscione E, Todaro D, et al. Structural long-term transcatheter aortic valve durability. Interv Cardiol:DOI:10.15420/icr.2019.4.2.eCollection.
  • Wells SM, Sellaro T, MSS Ã. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials:DOI:10.1016/j.biomaterials.2004.06.046.
  • Bre LP, McCarthy R, Wang W. Prevention of bioprosthetic heart valve calcification: strategies and outcomes. Curr Med Chem. 2014;21:2553–2564.
  • Naso F, Gandaglia A, Iop L, et al. Alpha-Gal detectors in xenotransplantation research: A word of caution [Internet]. Xenotransplantation. 2012 [cited 2020 May 4]:215–220. Available from:: http://www.ncbi.nlm.nih.gov/pubmed/22909134
  • Bouten CVC, Smits AIPM, Baaijens FPT. Can we grow valves inside the heart? Perspective on material-based in situ heart valve tissue engineering. Front Cardiovasc Med. 2018;5:1–10.
  • Wissing TB, Bonito V, Bouten CVC, et al. Biomaterial-driven in situ cardiovascular tissue engineering — a multi-disciplinary perspective. NPJ Regen Med. 2017 Jun 16;2:DOI:10.1038/s41536-017-0023-2.eCollection.
  • David TE. Reoperations after the ross procedure. Circulation. 2010;122:1139–1140.
  • Arsalan M, Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat Rev Cardiol. 2016 Jun;1:360–367. Nature Publishing Group.
  • Bourguignon T, Bouquiaux-Stablo AL, Candolfi P, et al. Very long-term outcomes of the carpentier-edwards perimount valve in aortic position. Ann Thorac Surg. 2015;99:831–837.
  • Liu Z, Kidney E, Bem D, et al. Transcatheter aortic valve implantation for aortic stenosis in high surgical risk patients: a systematic review and meta-analysis. PLoS One. 2018;13:1–14.
  • Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–1620.
  • Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–1331.
  • Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019 May 2;380(18):1695-1705. DOI:10.1056/NEJMoa1814052. Epub 2019 Mar 16.
  • Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019 May 2;380(18):1706–1715. DOI:10.1056/NEJMoa1816885. Epub 2019 Mar 16.
  • Voigtländer L, Seiffert M. Expanding TAVI to low and intermediate risk patients. Front Cardiovasc Med. 2018;5. DOI:10.3389/fcvm.2018.00092
  • Syedain Z, Reimer J, Schmidt J, et al. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials. 2015;73:175–184.
  • Lintas V, Fioretta ES, Motta SE, et al. Development of a novel human cell-derived tissue-engineered heart valve for transcatheter aortic valve replacement: an in vitro and in vivo feasibility study. J Cardiovasc Transl Res. 2018;11:470–482.
  • Miyazaki Y, Soliman OI, Abdelghani M, et al. Acute performance of a novel restorative transcatheter aortic valve: preclinical results. EuroIntervention. 2017;13:e1410–e1417.
  • Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:3006–3008.
  • Cribier A. Development of transcatheter aortic valve implantation (TAVI): a 20-year odyssey. Arch Cardiovasc Dis. 2012;105:146–152.
  • Walther T, Simon P, Dewey T, et al. Transapical minimally invasive aortic valve implantation: multicenter experience. Circulation. [Internet]. 2007 [cited 2020 Mar 13];116:I240–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17846311
  • Taramasso M, Pozzoli A, Latib A, et al. New devices for TAVI: technologies and initial clinical experiences. Nat Rev Cardiol. 2014:157–167. DOI: 10.1038/nrcardio.2013.221.
  • Vlastra W, Chandrasekhar J, Muñoz-Garcia AJ, et al. Comparison of balloon-expandable vs. self-expandable valves in patients undergoing transfemoral transcatheter aortic valve implantation: from the CENTER-collaboration. Eur Heart J. 2019;40:456–465.
  • Thiele H, Kurz T, Feistritzer H-J, et al. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial. Eur Heart J. [Internet]. 2020 [cited 2020 Mar 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32049283
  • Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. [Internet]. 2010 [cited 2020 Apr 1];363:1597–1607. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1008232
  • Gaia DF, Breda JR, Ferreira CBND, et al. New Braile Inovare transcatheter aortic prosthesis: clinical results and follow-up. EuroIntervention [Internet]. 2015 [cited 2020 Mar 11];11:682–689. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26499221
  • Treede H, Mohr F-W, Baldus S, et al. Transapical transcatheter aortic valve implantation using the JenaValveTM system: acute and 30-day results of the multicentre CE-mark study. Eur J Cardiothorac Surg. [Internet]. 2012 [cited 2020 Mar 9];41:e131–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22508111.
  • Kempfert J, Holzhey D, Hofmann S, et al. First registry results from the newly approved ACURATE TATM TAVI system†. Eur J Cardiothorac Surg. [Internet]. 2015 [cited 2020 Mar 16];48:137–141. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25425552
  • Manoharan G, Linke A, Moellmann H, et al. Multicentre clinical study evaluating a novel resheathable annular functioning self-expanding transcatheter aortic valve system: safety and performance results at 30 days with the Portico system. EuroIntervention. 2016;12:768–774.
  • Manoharan G, Van Mieghem NM, Windecker S, et al. 1-year outcomes with the evolut R self-expanding transcatheter aortic valve: from the international FORWARD study. JACC Cardiovasc Interv. 2018;11:2326–2334.
  • Forrest JK, Mangi AA, Popma JJ, et al. Early outcomes with the evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. JACC Cardiovasc Interv. [Internet]. 2018 [cited 2020 Apr 1];11:160–168. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29348010
  • Holzhey D, Linke A, Treede H, et al. Intermediate follow-up results from the multicenter engager European pivotal trial. Ann Thorac Surg. [Internet]. 2013 [cited 2020 Apr 1];96:2095–2100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24021766
  • Jagielak D, Stanska A, Klapkowski A, et al. Transfermoral aortic valve implantation using self-expanding new valve technology (NVT) Allegra bioprosthesis: a pilot prospective study. Cardiol J. [Internet]. 2019 [cited 2020 Mar 11]. Available from:: http://www.ncbi.nlm.nih.gov/pubmed/30761515
  • Reardon MJ, Feldman TE, Meduri CU, et al. Two-year outcomes after transcatheter aortic valve replacement with mechanical vs self-expanding valves: the REPRISE III randomized clinical trial. JAMA Cardiol. [Internet]. 2019 [cited 2020 Apr 1];4:223–229. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30810703
  • Arora S, Vavalle JP. Transcatheter aortic valve replacement in intermediate and low risk patients-clinical evidence. Ann Cardiothorac Surg. 2017;6:493–497.
  • Harky A, Suen MMY, Wong CHM, et al. Bioprosthetic aortic valve replacement in <50 years old patients – where is the evidence? Braz J Cardiovasc Surg. 2019 Dec 1;34(6):729–738. DOI:10.21470/1678-9741-2018-0374.
  • Salaun E, Clavel M, Rodés-cabau J, et al. Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation. Heart:DOI:10.1136/heartjnl-2017-311582. Epub 2018 May 7.
  • Kataruka A, Otto CM .Valve durability after transcatheter aortic valve implantation. J Thorac Dis. 2018:S3629–S3636. AME Publishing Company. doi:10.21037/jtd.2018.07.38.
  • Dasi LP, Hatoum H, Kheradvar A, et al. On the mechanics of transcatheter aortic valve replacement. Ann Biomed Eng. 2017;45:310–331.
  • Zareian R, Tseng J, Fraser R, et al. Effect of stent crimping on calcification of transcatheter aortic valves. Interact Cardiovasc Thorac Surg. 2019 Jul 1;29(1):DOI:10.1093/icvts/ivz024.
  • Alavi SH, Groves EM, Kheradvar A. The effects of transcatheter valve crimping on pericardial leaflets. Ann Thorac Surg. [Internet]. 2014 [cited 2020 Mar 10];97:1260–1266. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24444873
  • Kiefer P, Gruenwald F, Kempfert J, et al. Crimping may affect the durability of transcatheter valves : an experimental analysis. ATS. 2011;92:155–160.
  • Bourget J, Zegdi R, Lin J, et al. Correlation between structural changes and acute thrombogenicity in transcatheter pericardium valves after crimping and Corrélation entre les altérations structurales et la; 2017
  • Harken DE. Heart valves: ten commandments and still counting. Ann Thorac Surg. 1989;48:S18–S19.
  • Emmert MY, Schmitt BA, Loerakker S, et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med. 2018;10. DOI:10.1126/scitranslmed.aan4587.
  • Langer R, Vacanti JP. ARTICLES tissue engineering. Science. 1993;260:920–926. [ (80-.)].
  • Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34:1799–1819.
  • Mol A, Driessen NJB, Rutten MCM, et al. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann Biomed Eng. 2005;33:1778–1788.
  • Schmidt D, Dijkman PE, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. [Internet]. 2010 [cited 2020 Apr 28];56:510–520. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20670763
  • Cebotari S, Lichtenberg A, Tudorache I, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114. DOI:10.1161/CIRCULATIONAHA.105.001065.
  • Dohmen P, da Costa F. An experimental study of decellularized xenografts implanted into the aortic position with 4 months of follow up. J Clin Exp Cardiolog. 2012;s4. DOI:10.4172/2155-9880.S4-004
  • Erdbrügger W, Konertz W, Dohmen PM, et al. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng. 2006;12:2059–2068.
  • Sodian R, Hoerstrup SP, Sperling JS, et al. Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg. 2000;70:140–144.
  • Mol A. Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation. [Internet]. 2006 [cited 2020 Apr 8];114:I-152-I–158. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.105.001123
  • Flanagan TC, Sachweh JS, Frese J, et al. in vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A. 2009;15:2965–2976.
  • Gottlieb D, Kunal T, Emani S, et al. In vivo monitoring of function of autologous engineered pulmonary valve. J Thorac Cardiovasc Surg. 2010;139:723–731.
  • Dijkman PE, Driessen-Mol A, Frese L, et al. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials. 2012;33:4545–4554.
  • Zafar F, Morales DLS. In situ heart valve tissue engineering: using the innate immune response to do the hard work. J Thorac Cardiovasc Surg. 2018;155:2602–2603.
  • Wissing TB, Bonito V, van Haaften EE, et al. Macrophage-driven biomaterial degradation depends on scaffold microarchitecture. Front Bioeng Biotechnol. 2019;7. DOI:10.3389/fbioe.2019.00087.
  • Lichtenberg A, Tudorache I, Cebotari S, et al. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation. 2006;114:559–565.
  • Biermann AC, Marzi J, Brauchle E, et al. Improved long-term durability of allogeneic heart valves in the orthotopic sheep model. Eur J Cardiothorac Surg. 2019;55:484–493.
  • Tudorache I, Horke A, Cebotari S, et al. Decellularized aortic homografts for aortic valve and aorta ascendens replacement. Eur J Cardiothorac Surg. 2016;50:89–97.
  • Sarikouch S, Horke A, Tudorache I, et al. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg. 2016;50:281–290.
  • Cebotari S, Tudorache I, Ciubotaru A, et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation. 2011;124:115–123.
  • Nappi F, Nenna A, Petitti T, et al. Long-term outcome of cryopreserved allograft for aortic valve replacement.J Thorac Cardiovasc Surg. 2018 Oct;156(4):DOI:10.1016/j.jtcvs.2018.04.040. Epub 2018 Apr 18.
  • Fukushima S, Tesar PJ, Pearse B, et al. Long-term clinical outcomes after aortic valve replacement using cryopreserved aortic allograft. J Thorac Cardiovasc Surg. 2014;148:65–72.e2.
  • Hofmann M, Schmiady MO, Burkhardt BE, et al. Congenital aortic valve repair using CorMatrix®: a histologic evaluation. Xenotransplantation. 2017;24:1–9.
  • Ruiz CE, Iemura M, Medie S, et al. Transcatheter placement of a low-profile biodegradable pulmonary valve made of small intestinal submucosa: a long-term study in a swine model. J Thorac Cardiovasc Surg. 2005;130:477.e1-477.e9.
  • van Rijswijk JW, Talacua H, Mulder K, et al. Failure of decellularized porcine small intestinal submucosa as a heart valved conduit. J Thorac Cardiovasc Surg. 2020. DOI:10.1016/j.jtcvs.2019.09.164.
  • Mosala Nezhad Z, Baldin P, Poncelet A, et al. Calcific degeneration of CorMatrix 4 years after bicuspidization of unicuspid aortic valve. Ann Thorac Surg. 2017;104:e431–e433.
  • Padalino MA, Castaldi B, Fedrigo M, et al. Porcine intestinal submucosa (CorMatrix) for semilunar valve repair in children: a word of caution after midterm results. Semin Thorac Cardiovasc Surg. 2016;28:436–445.
  • Zaidi AH, Nathan M, Emani S, et al. Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: histologic evaluation of explanted valves. J Thorac Cardiovasc Surg. 2014;148:2216–2225.e1.
  • Mosala Nezhad Z, Poncelet A, De Kerchove L, et al. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. Interact Cardiovasc Thorac Surg. 2016;22(6):839–850. .
  • Perri G, Polito A, Esposito C, et al. Early and late failure of tissue-engineered pulmonary valve conduits used for right ventricular outflow tract reconstruction in patients with congenital heart disease. Eur J Cardiothorac Surg. 2012;41:1320–1325.
  • Backhoff D, Steinmetz M, Sigler M, et al. Formation of multiple conduit aneurysms following Matrix P® conduit implantation in a boy with tetralogy of Fallot and pulmonary atresia. Eur J Cardiothorac Surg. 2014;46:500–502.
  • Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFTTM in pediatric patients. Eur J Cardiothorac Surg. 2003;23:1002–1006.
  • Schmidt D, Dijkman PE, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves. J Am Coll Cardiol. 2010;56:510–520.
  • Dijkman PE, Driessen-Mol A, de Heer LM, et al. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. J Heart Valve Dis. 2012;21:670–678.
  • Driessen-Mol A, Emmert MY, Dijkman PE, et al. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol. 2014;63:1320–1329.
  • Weber B, Dijkman PE, Scherman J, et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. [Internet]. 2013 [cited 2020 Apr 8];34:7269–7280. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23810254
  • Syedain ZH, Meier LA, Lahti MT, et al. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng - Part A. 2014;20:1726–1734.
  • Motta SE, Lintas V, Fioretta ES, et al. Human cell-derived tissue-engineered heart valve with integrated Valsalva sinuses: towards native-like transcatheter pulmonary valve replacements. NPJ Regen Med. 2019;4:14.
  • Motta SE, Fioretta ES, Dijkman PE, et al. Development of an off-the-shelf tissue-engineered sinus valve for transcatheter pulmonary valve replacement: a proof-of-concept study. J Cardiovasc Transl Res. 2018;11:182–191.
  • Syedain ZH, Graham ML, Dunn TB, et al. A completely biological “off-the-shelf” arteriovenous graft that recellularizes in baboons. Sci Transl Med. 2017;9. DOI:10.1126/scitranslmed.aan4209.
  • Reimer JM, Syedain ZH, Haynie BHT, et al. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials. 2015;62:88–94.
  • Syedain ZH, Meier LA, Bjork JW, et al. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011;32:714–722.
  • Kluin J, Talacua H, Smits AIPM, et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant – from material design to 12 months follow-up in sheep. Biomaterials. 2017;125:101–117.
  • Emmert MY, Weber B, Behr L, et al. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. Eur J Cardiothorac Surg. 2014;45:61–68.
  • Emmert MY, Weber B, Wolint P, et al. Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovasc Interv. 2012;5:874–883.
  • Emmert MY, Weber B, Behr L, et al. Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC Cardiovasc Interv. 2011;4:822–823.
  • Bennink G, Torii S, Brugmans M, et al. A novel restorative pulmonary valved conduit in a chronic sheep model: mid-term hemodynamic function and histologic assessment. J Thorac Cardiovasc Surg. 2018;155:2591–2601.e3. DOI:10.1016/j.jtcvs.2017.12.046. Epub 2017 Dec 21.
  • Soliman OI, Miyazaki Y, Abdelghani M, et al. Midterm performance of a novel restorative pulmonary valved conduit: preclinical results. EuroIntervention. 2017;13:e1418–e1427.
  • Stone GW, Kimura T, Gao R, et al. Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up: a systematic meta-analysis and individual patient data pooled study. JAMA Cardiol. 2019;4:1261–1269.
  • Fioretta ES, Lintas V, Mallone A, et al. Differential leaflet remodeling of bone marrow cell pre-seeded versus nonseeded bioresorbable transcatheter pulmonary valve replacements. JACC Basic Transl Sci. 2019 Dec 11;5(1):15–31. DOI:10.1016/j.jacbts.2019.09.008.eCollection.
  • Serruys PW, Miyazaki Y, Katsikis A, et al. Restorative valve therapy by endogenous tissue restoration: tomorrow’s world? Reflection on the EuroPCR 2017 session on endogenous tissue restoration. EuroIntervention. 2017;13:AA68–AA77.
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243.
  • Huygens SA, Ramos IC, Bouten CVC, et al. Early cost-utility analysis of tissue-engineered heart valves compared to bioprostheses in the aortic position in elderly patients. Eur J Heal Econ. 2020. DOI:10.1007/s10198-020-01159-y.
  • Sanders B, Loerakker S, Fioretta ESES, et al. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann Biomed Eng. 2016;44:1061–1071.
  • Reimer J, Syedain Z, Haynie B, et al. Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng. 2017;45:439–451.
  • Capulli AK, Emmert MY, Pasqualini FS, et al. JetValve: rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials. 2017;133:229–241.
  • Jana S, Tefft BJ, Spoon DB, et al. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014;10:2877–2893.
  • Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139:431–436.e2.
  • Shin’oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129:1330–1338.
  • Brennan MP, Breuer CK, Dardik A, et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg. 2008;248:370–376.
  • Roh JD, Sawh-martinez R, Brennan MP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an in fl ammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4669–4674. DOI:10.1073/pnas.0911465107. Epub 2010 Mar 5.
  • Fukunishi T, Best CA, Ong CS, et al. Role of bone marrow mononuclear cell seeding for nanofiber vascular grafts. Tissue Eng Part A. 2018 Jan;24(1–2):135–144. DOI:10.1089/ten.TEA.2017.0044.Epub 2017 Jun 13.
  • Weber B, Scherman J, Emmert MY, et al. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur Heart J. 2011;32:2830–2840.
  • Van Geemen D, Soares ALF, Oomen PJA, et al. Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. 2016;
  • Oomen PJA, Loerakker S, Van Geemen D, et al. Acta biomaterialia age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater. 2016;29:161–169.
  • Syedain ZH, Lahti MT, Johnson SL, et al. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc Eng Technol. 2011;2:101–112.
  • Mol A, Bouten CVC, Zünd G, et al. The relevance of large strains in functional tissue engineering of heart valves. Thorac Cardiovasc Surg. 2003;51:78–83.
  • Zakerzadeh R, Hsu MC, Sacks MS. Computational methods for the aortic heart valve and its replacements. Expert Rev Med Devices. 2017;14:849–866.
  • Jockenhoevel S, Zund G, Hoerstrup SP, et al. Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. Asaio J. 2002;48:8–11.
  • Engelmayr GC, Rabkin E, Sutherland FWH, et al. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials. 2005;26:175–187.
  • Mol A, Van Lieshout MI, Dam-De Veen CG, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005;26:3113–3121.
  • Goor OJGM, Hendrikse SIS, Dankers PYW, et al. From supramolecular polymers to multi-component biomaterials. Chem Soc Rev. Royal Society of Chemistry. 2017;6621–6637. DOI:10.1039/C7CS00564D.
  • Koehler T, Buege M, Schleiting H, et al. Changes of the eSheath outer dimensions used for transfemoral transcatheter aortic valve replacement. 2015 [cited 2020 Apr 28]; Available from: http://dx.doi.10.1155/2015/572681.
  • Amahzoune B, Bruneval P, Allam B, et al. Traumatic lea fl et injury during the use of percutaneous valves : a comparative study of balloon- and self-expandable valved stents. Eur J Cardiothorac Surg:DOI:10.1093/ejcts/ezs359.Epub 2012 Jun 4.
  • Musumeci L, Jacques N, Hego A, et al. Prosthetic aortic valves: challenges and solutions. Front Cardiovasc Med. 2018;5:1–5.
  • Zhang BL, Bianco RW, Schoen FJ. Preclinical assessment of cardiac valve substitutes: current status and considerations for engineered tissue heart valves. Front Cardiovasc Med. 2019. Frontiers Media S.A. doi:10.3389/fcvm.2019.00072.
  • Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease, treatment, and regenerative medicine: on the cusp of naturally inspired engineering breakthroughs. Adv Drug Deliv Rev. 2011. DOI:10.1016/j.addr.2011.01.008
  • Hoerstrup SP, Sodian R, Daebritz S, et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102. 10.1161/01.CIR.102.suppl_3.III-44.
  • Jockenhoevel S, Chalabi K, Sachweh JS, et al. Tissue engineering: complete autologous valve conduit - A new moulding technique. Thorac Cardiovasc Surg. [Internet]. 2001 [cited 2020 Apr 8];49:287–290. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11605139
  • Flameng W, Daenen W, Jashari R, et al. Durability of homografts used to treat complex aortic valve endocarditis. Ann Thorac Surg. 2015;99:1234–1238.
  • Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:1–15.
  • Loerakker S, Argento G, Oomens CWJ, et al. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J Biomech. 2013;46:1792–1800.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–969.
  • Loerakker S, Ristori T, Baaijens FPTT. A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J Mech Behav Biomed Mater. 2016;58:173–187.
  • Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010 Jun;12(2):188–96. DOI:10.1208/s12248-010-9175-3. Epub 2010 Feb 9.
  • Braune S, Groß M, Walter M, et al. Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials. [Internet] J Biomed Mater Res Part B Appl Biomater. 2016 [cited 2020 May 2];104:210–217.
  • Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;5681–5703. DOI:10.1016/j.biomaterials.2004.01.023
  • Fromell K, Yang Y, Nilsson Ekdahl K, et al. Absence of conformational change in complement factor 3 and factor XII adsorbed to acrylate polymers is related to a high degree of polymer backbone flexibility. Biointerphases. 2017;12:02D417.
  • Ratner BD. The catastrophe revisited: blood compatibility in the 21st Century. Biomaterials. 2007;28:5144–5147.
  • Reviakine I, Jung F, Braune S, et al. Stirred, shaken, or stagnant: what goes on at the blood–biomaterial interface. Blood Rev. 2017 Jan;31(1):11–21. DOI:10.1016/j.blre.2016.07.003.Epub 2016 Jul 25.
  • Reinthaler M, Braune S, Lendlein A, et al. Platelets and coronary artery disease: interactions with the blood vessel wall and cardiovascular devices. Biointerphases. 2016;11:029702.
  • Fioretta ES, Dijkman PE, Emmert MY, et al. The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. J Tissue Eng Regen Med. 2018 Jan;1:e323–e335. John Wiley and Sons Ltd.
  • Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005 Mar;79(3):1072–1080. DOI:10.1016/j.athoracsur.2004.06.033.
  • Jalal Z, Galmiche L, Beloin C, et al. Impact of percutaneous pulmonary valve implantation procedural steps on leaflets histology and mechanical behaviour : an in vitro study. Arch Cardiovasc Dis. 2016;109:465–475.
  • Nordin BEC, Need AG, Morris HA, et al. Effect of age on calcium absorption in postmenopausal women. Am J Clin Nutr. 2004;80:998–1002.
  • Merryman WD, Schoen FJ. Mechanisms of calcification in aortic valve disease: role of mechanokinetics and mechanodynamics. Curr Cardiol Rep. 2013;15:355.
  • Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failure. Histopathology. 2009;55:135–144.
  • Gould ST, Srigunapalan S, Simmons CA, et al. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ Res. 2013;113:186–197.
  • Sliwa K, Zilla P. Rheumatic heart disease: the tip of the iceberg. Circulation. 2012;125:3060–3062.
  • Scherman J, Bezuidenhout D, Ofoegbu C, et al. TAVI for low to middle income countries. Eur Heart J [Internet]. 2017;38:1182–1184. .
  • Scherman J, Ofoegbu C, Myburgh A, et al. Preclinical evaluation of a transcatheter aortic valve replacement system for patients with rheumatic heart disease. EuroIntervention. [Internet]. 2019 [cited 2020 Jun 24];15:e975–e982. Available from: https://pubmed.ncbi.nlm.nih.gov/31403458/
  • Huygens SA, Rutten-van Mölken MPMH, Noruzi A, et al. What is the potential of tissue-engineered pulmonary valves in children? Ann Thorac Surg. 2019;107:1845–1853.
  • Xu F, Morganti S, Zakerzadeh R, et al. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid – structure interaction analysis.Int J Numer Method Biomed Eng. 2018 Apr;34(4):DOI:10.1002/cnm.2938. Epub 2018 Jan 25.
  • Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. [Internet]. 2019 [cited 2020 Jun 19];6:1900344. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201900344
  • Coulter FB, Schaffner M, Faber JA, et al. Bioinspired heart valve prosthesis made by silicone additive manufacturing. Matter. 2019;1:266–279.
  • Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering Biofabrication Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. 2020 [cited 2020 Jun 19]; Available from: http://doi.org/10.1088/1758-5090/ab97a1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.