120
Views
2
CrossRef citations to date
0
Altmetric
Review

Noninvasive rapid cardiac magnetic resonance for the assessment of cardiomyopathies in low-middle income countries

, , , , , , , & ORCID Icon show all
Pages 387-398 | Received 27 Nov 2020, Accepted 07 Apr 2021, Published online: 24 May 2021

References

  • Collaborators GCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1736–1788.
  • Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation. 2020;141(9):e139–e596.
  • Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2197–2223.
  • Bowry AD, Lewey J, Dugani SB, et al. The burden of cardiovascular disease in low- and middle-income countries: epidemiology and management. Can J Cardiol. 2015;31(9):1151–1159.
  • Gheorghe A, Griffiths U, Murphy A, et al. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1):975.
  • Gaziano TA. Reducing the growing burden of cardiovascular disease in the developing world. Health Aff (Millwood). 2007;26(1):13–24.
  • Vitola JV, Shaw LJ, Allam AH, et al. Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world. J Nucl Cardiol. 2009;16(6):956.
  • Owolabi M, Miranda JJ, Yaria J, et al. Controlling cardiovascular diseases in low and middle income countries by placing proof in pragmatism. BMJ Glob Health. 2016;1(3):e000105.
  • Anand S, Bradshaw C, Prabhakaran D. Prevention and management of CVD in LMICs: why do ethnicity, culture, and context matter? BMC Med. 2020;18(1):7.
  • Blankstein R. Cardiology patient page. Introduction to noninvasive cardiac imaging. Circulation 2012;125(3):e267–71.
  • Bruder O, Wagner A, Lombardi M, et al., European cardiovascular magnetic resonance (EuroCMR) registry–multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson. 2013;15(1):9.
  • Flett AS, Westwood MA, Davies LC, et al. The prognostic implications of cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2009;2(3):243–250.
  • Ripley DP, Musa TA, Dobson LE, et al. Cardiovascular magnetic resonance imaging: what the general cardiologist should know. Heart. 2016;102(19):1589–1603.
  • Kwong RY, Petersen SE, Schulz-Menger J, et al. The global cardiovascular magnetic resonance registry (GCMR) of the society for cardiovascular magnetic resonance (SCMR): its goals, rationale, data infrastructure, and current developments. J Cardiovasc Magn Reson. 2017;19(1):23.
  • Herrey AS, Francis JM, Hughes M, et al. Cardiovascular magnetic resonance can be undertaken in pregnancy and guide clinical decision-making in this patient population. Eur Heart J Cardiovasc Imaging. 2019;20(3):291–297.
  • Wong TC, Piehler K, Puntil KS, et al. Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography. J Cardiovasc Magn Reson. 2013;15(1):6.
  • Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update. J Cardiovasc Magn Reson. 2020;22(1):19.
  • Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17.
  • Menacho-Medina K, Ntusi NAB, Moon JC, et al. Rapid cardiac MRI protocols: feasibility and potential applications. Curr Radiol Rep. 2020;8(2):2.
  • Global Health Observatory Data Repository 2016 [updated 2016 March 09 [Internet]. 2016. Available from: https://gateway.euro.who.int/en/indicators/hlthres_95-magnetic-resonance-imaging-units-per-100-000/.
  • Ogbole GI, Adeyomoye AO, Badu-Peprah A, et al. Survey of magnetic resonance imaging availability in West Africa. Pan Afr Med J. 2018;30:240.
  • Khaing M, Saw YM, Than TM, et al. Geographic distribution and utilisation of CT and MRI services at public hospitals in Myanmar. BMC Health Serv Res. 2020;20(1):742.
  • Ganesan AN, Gunton J, Nucifora G, et al. Impact of Late Gadolinium Enhancement on mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic cardiomyopathy: a systematic review and meta-analysis. Int J Cardiol. 2018;254:230–237.
  • He T, Gatehouse PD, Smith GC, et al. Myocardial T2* measurements in iron-overloaded thalassemia: an in vivo study to investigate optimal methods of quantification. Magn Reson Med. 2008;60(5):1082–1089.
  • Pennell DJ, Udelson JE, Arai AE, et al. Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American heart association. Circulation. 2013;128(3):281–308.
  • Menacho K, Seraphim A, Ramirez S, et al. Myocardial inflammation and edema in people living with human immunodeficiency virus. JACC Cardiovasc Imaging. 2020;13(5):1278–1280.
  • Senra T, Ianni BM, Costa ACP, et al. Long-term prognostic value of myocardial fibrosis in patients with chagas cardiomyopathy. J Am Coll Cardiol. 2018;72(21):2577–2587.
  • Dragonetti L, Pietrani M, Rivas C, et al. Prevalence of Cardiac Abnormalities in Fabry Disease: a Large CMR Study in Argentina. International Cardiovascular Forum Journal. 2017;2017:9.
  • Greenwood JP, Ripley DP, Berry C, et al. Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or nice guidelines on subsequent unnecessary angiography rates: the CE-MARC 2 randomized clinical trial. Jama. 2016;316(10):1051–1060.
  • Von Knobelsdorff-brenkenhoff F, Schulz-Menger J. Role of cardiovascular magnetic resonance in the guidelines of the European society of cardiology. Journal of Cardiovascular Magnetic Resonance : Official Journal of the Society for Cardiovascular Magnetic Resonance. 2016;18(1):6.
  • Von Knobelsdorff-brenkenhoff F, Pilz G, Schulz-Menger J. Representation of cardiovascular magnetic resonance in the AHA/ACC guidelines. J Cardiovascul Magnetic Res. 2017;19(1):70.
  • Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–1453.
  • Kim EK, Lee GY, Jang SY, et al. The extent of late gadolinium enhancement can predict adverse cardiac outcomes in patients with non-ischemic cardiomyopathy with reduced left ventricular ejection fraction: a prospective observational study. Korean J Radiol. 2020;22(3):324-333.
  • Todiere G, Nugara C, Gentile G, et al. Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score. Am J Cardiol. 2019;124(8):1286–1292.
  • Freitas P, Ferreira AM, Arteaga-Fernández E, et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J Cardiovasc Magn Reson. 2019;21(1):50.
  • Hanneman K, Karur GR, Wasim S, et al. Prognostic significance of cardiac magnetic resonance imaging late gadolinium enhancement in fabry disease. Circulation. 2018;138(22):2579–2581.
  • Hulten E, Agarwal V, Cahill M, et al. Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis: A systematic review and meta-analysis. Circ Cardiovasc Imaging. 2016;9(9):e005001.
  • Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132(16):1570–1579.
  • Modell B, Khan M, Darlison M, et al., Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10(1):42.
  • Aquaro GD, Perfetti M, Camastra G, et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study. J Am Coll Cardiol. 2017;70(16):1977–1987.
  • Peretto G, Sala S, Lazzeroni D, et al. Septal late gadolinium enhancement and arrhythmic risk in genetic and acquired non-ischaemic cardiomyopathies. Heart Lung Circ. 2020;29(9):1356–1365.
  • Xie J, Lai P, Huang F, et al. Cardiac magnetic resonance imaging using radial k-space sampling and self-calibrated partial parallel reconstruction. Magn Reson Imaging. 2010;28(4):495–506.
  • Kido T, Kido T, Nakamura M, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson. 2016;18(1):50.
  • Christodoulou AG, Shaw JL, Nguyen C, et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng. 2018;2(4):215–226.
  • Kramer CM. Potential for rapid and cost‐effective cardiac magnetic resonance in the developing (and developed) world. J Am Heart Assoc. 2018;7(17):17.
  • Menacho K, Ramirez S, Segura P, et al. INCA (Peru) study: impact of non-invasive cardiac magnetic resonance assessment in the developing world. J Am Heart Assoc. 2018;7(17):Article e008981. 2018.
  • D’Angelo T, Grigoratos C, Mazziotti S, et al. High-throughput gadobutrol-enhanced CMR: a time and dose optimization study. J Cardiovasc Magn Reson. 2017;19(1):83.
  • Menacho Medina KD, Ramirez S, Katekaru D, et al. 28Impact of non-invasive rapid cardiac magnetic resonance for the assessment of cardiomyopathies in developing countries. Eur Heart J. 2019;40(Supplement_1). DOI:10.1093/eurheartj/ehz747.
  • De Sanctis V, Kattamis C, Canatan D, et al. β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 2017;9(1):e2017018.
  • Porter JB, Garbowski M. The pathophysiology of transfusional iron overload. Hematol Oncol Clin North Am. 2014;28(4):683–701. vi.
  • Kirk P, Roughton M, Porter JB, et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009;120(20):1961–1968.
  • Veríssimo MP, Loggetto SR, Fabron Junior A, et al. Brazilian thalassemia association protocol for iron chelation therapy in patients under regular transfusion. Rev Bras Hematol Hemoter. 2013;35(6):428–434.
  • Fernandes JL, Fioravante LAB, Verissimo MP, et al. A free software for the calculation of T2* values for iron overload assessment. Acta Radiol. 2017;58(6):698–701.
  • Abdel-Gadir A, Vorasettakarnkij Y, Ngamkasem H, et al. Ultrafast magnetic resonance imaging for iron quantification in thalassemia participants in the developing world: the tic-toc study (thailand and uk international collaboration in thalassaemia optimising ultrafast CMR). Circulation. 2016;134(5):432–434.
  • Fernandes JL, Siqueira MHA, Nobrega De Oliveira KT, et al. Use of an accelerated protocol for rapid analysis of iron overload in the heart and liver: the all iron detected (AID) multicenter study. J Cardiovasc Magn Reson. 2015;17(Suppl1):O62–O.
  • Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–460.
  • Nagel E, Greenwood JP, McCann GP, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. The New England Journal of Medicine. 2019;380(25):2418–2428.
  • Foley JRJ, Richmond C, Fent GJ, et al. Rapid cardiovascular magnetic resonance for ischemic heart disease investigation (RAPID-IHD). JACC Cardiovasc Imaging. 2020;13(7):1632–1634.
  • Biglands JD, Magee DR, Sourbron SP, et al. Comparison of the diagnostic performance of four quantitative myocardial perfusion estimation methods used in cardiac MR imaging: CE-MARC substudy. Radiology. 2015;275(2):393–402.
  • Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European association for cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75.
  • Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36(4):244–251.
  • Nordin S, Kozor R, Medina-Menacho K, et al. Proposed stages of myocardial phenotype development in fabry disease. JACC cardiovasc imaging. 2019 Aug; 12(8 Pt 2):1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
  • Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988.
  • Jordan JH, Todd RM, Vasu S, et al. Cardiovascular magnetic resonance in the oncology patient. JACC Cardiovasc Imaging. 2018;11(8):1150–1172.
  • Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol. 2019;73(7):779–791.
  • Chung R, Maulik A, Hamarneh A, et al. Effect of remote ischaemic conditioning in oncology patients undergoing chemotherapy: rationale and design of the ERIC-ONC study–A single-center, blinded, randomized controlled trial. Clin Cardiol. 2016;39(2):72–82.
  • Kelle S, Bucciarelli-Ducci C, Judd RM, et al. Society for Cardiovascular Magnetic Resonance (SCMR) recommended CMR protocols for scanning patients with active or convalescent phase COVID-19 infection. J Cardiovasc Magn Reson. 2020;22(1):61.
  • Han Y, Chen T, Bryant J, et al. Society for Cardiovascular Magnetic Resonance (SCMR) guidance for the practice of cardiovascular magnetic resonance during the COVID-19 pandemic. J Cardiovasc Magn Reson. 2020;22(1):26.
  • Muehlberg F, Funk S, Zange L, et al. Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy. ESC Heart Fail. 2018;5(4):620–629.
  • Herzog BGJ, Greenwood J, Sven P, et al. Cardiovascular magnetic resonance pocket guide. European Society of Cardiology. Second Edition, 2017. p. 12, [cited 2021 Feb 12]. Available from: https://www.escardio.org/Sub-specialty-communities/European-Association-of-Cardiovascular-Imaging-(EACVI)/Research-and-Publications/CMR-Pocket-Guides
  • Budjan J, Haubenreisser H, Henzler T, et al. Rapid functional cardiac imaging after gadolinium injection: evaluation of a highly accelerated sequence with sparse data sampling and iterative reconstruction. Sci Rep. 2016;6(1):38236.
  • Wildgruber M, Settles M, Herrmann K, et al. Inversion-recovery single-shot cardiac MRI for the assessment of myocardial infarction at 1.5 T with a dedicated cardiac coil. Br J Radiol. 2016;6(1):e709–e15.
  • Foley JRJ, Fent GJ, Garg P, et al. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar. J Magn Reson Imaging. 2019;49(5):1437–1445.
  • Torlasco C, Cassinerio E, Roghi A, et al. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. PloS One. 2018;13(2):e0192890.
  • Lambert J, Lamacie M, Thampinathan B, et al. Variability in echocardiography and MRI for detection of cancer therapy cardiotoxicity. Heart. 2020;106(11):817–823.
  • Bhuva AN, Bai W, Lau C, et al. A multicenter, scan-rescan, human and machine learning CMR Study to test generalizability and precision in imaging biomarker analysis. Circ Cardiovasc Imaging. 2019;12(10):e009214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.