316
Views
1
CrossRef citations to date
0
Altmetric
Review

Applications of computational fluid dynamics to congenital heart diseases: a practical review for cardiovascular professionals

, ORCID Icon, , , ORCID Icon &
Pages 907-916 | Received 02 Feb 2021, Accepted 25 Oct 2021, Published online: 12 Nov 2021

References

  • Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–1900.
  • Oster ME, Lee KA, Honein MA, et al. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics. 2013;131:e1502–8.
  • Bove EL, de Leval MR, Magliavacca F, et al. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2003;126:1040–1047.
  • de Leval MR, Dubini G, Migliavacca F, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg. 1996 Mar; 111(3):502–513.
  • Gerrah R, Haller SJ. Computational fluid dynamics: a primer for congenital heart disease clinicians. Asian Cardiovasc Thorac Ann. 2020 Oct;288:520–532. Epub 2020 Sep 2. PMID: 32878458.
  • Theodorakakos A, Gavaises M, Andriotis A, et al. Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery. Phys Med Biol. 2008;53:4875–4879.
  • Cho Y, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology. 1991;8:241–262.
  • Morris PD, Narracott A, Von Tengg-kobligk H, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 2016 Jan;102(1):18–28.
  • Pennati G, Corsini C, Hsia TY, et al. Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Computational fluid dynamics models and congenital heart diseases. Front Pediatr. 2013 Feb 26;1:4. PMID: 24432298; PMCID: PMC3882907.
  • Arbia G, Esmaily Moghadam M, Marsden AL, et al. Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Numerical blood flow simulation in surgical corrections: what do we need for an accurate analysis? J Surg Res. 2014 Jan;1861:44–55. Epub. 2013 Aug 11.
  • Madhavan S, Kemmerling EMC. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow. Biomed Eng. 2018 May 30;17(1):66. Online. PMID: 29843730; PMCID: PMC5975715.
  • Pirola S, Cheng Z, Jarral OA, et al. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J Biomech. 2017 Jul 26;60:15–21. Epub. 2017 Jun 20. PMID: 28673664.
  • Shi Y, Lawford P, Hose R. Review of Zero-D and 1-D models of blood flow in the cardiovascular system. BioMed Eng. 2011;10:33. OnLine.
  • Jamalidinan F, Hassanabad AF, François CJ, et al. Four-dimensional-flow magnetic resonance imaging of the aortic valve and thoracic aorta. Radiol Clin North Am. 2020 Jul;58(4):753–763.
  • Morbiducci U, Kok AM, Kwak BR, et al. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. ThrombHaemost. 2016 Mar;115(3):484–492.
  • Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol. 2014;5:318.
  • Sato Y, Poynter G, Huss D, et al. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS ONE. 2010;5:e12674.
  • Hierck BP, Van der Heiden K, Poelma C, et al. Fluid shear stress and inner curvature remodeling of the embryonic heart. Choosing the right lane! Sci World J. 2008;8:212–222.
  • Courchaine K, Rugonyi S. Quantifying blood flow dynamics during cardiac development: demystifying computational methods. Philos Trans Royal Soc B. 2018;373:20170330.
  • Kardos A, Babai L, Rudas L, et al. Epidemiology of congenital coronary anomalies: a coronary arteriography study on a central European population. Cathet Cardiovasc Diagn. 1997;42:270–275.
  • Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990;21:28–40.
  • Rigatelli G, Rigatelli A, Cominato S, et al. A clinical-angiographic risk scoring system for coronary artery anomalies. Asian Cardiovasc Thorac Ann. 2012;20:299–303.
  • Javadzadegan A, Moshfegh A, Fulker D, et al. Development of a computational fluid dynamics model for myocardial bridging. J Biomech Eng. 2018;140. DOI:https://doi.org/10.1115/1.4040127. in press.
  • Sharzehee M, Seddighi Y, Sprague EA, et al. A hemodynamic comparison of myocardial bridging and coronary atherosclerotic stenosis: a computational model with experimental evaluation. J Biomech Eng. 2020 Dec 3; doi:https://doi.org/10.1115/1.4049221. Epub ahead of print. PMID: 33269788.
  • Angelini P, Uribe C. Anatomic spectrum of left coronary artery anomalies and associated mechanisms of coronaryinsufficiency. Catheter Cardiovasc Interv. 2018;92:313–321. in press.
  • Rigatelli G, Zuin M, Galasso P, et al. Mechanisms of Myocardial Ischemia Inducing Sudden Cardiac Death in Athletes with Anomalous Coronary Origin from the Opposite Sinus: insights from a computational fluid dynamic study. Cardiovasc Revasc Med. 2019 Dec;20(12):1112–1116.
  • Rigatelli G, and Zuin M. Computed tomography-based patient-specific biomechanical and fluid dynamic study of anomalous coronary arteries with origin from the opposite sinus and intramural course. Heart Int. 2020;14(2):105-111. doi:https://doi.org/10.17925/HI.2020.14.2.105.
  • Razavi A, Sachdeva S, Frommelt PC, et al. Patient-specific numerical analysis of coronary flow in children with intramural anomalous aortic origin of coronary arteries. Semin Thorac Cardiovasc Surg. 2020 Aug 26;S1043-0679(20)30271–9. doi:https://doi.org/10.1053/j.semtcvs.2020.08.016. Epub ahead of print. PMID: 32858220.
  • Rigatelli G, Zuin M, Nghia NT. Interatrial shunts: technical approaches to percutaneous closure. Expert Rev Med Devices. 2018;15(10):707–716.
  • Rigatelli G, Zuin M, Fong A. Computational flow dynamic analysis of right and left atria in patent foramen ovale: potential links with atrial fibrillation. J Atr Fibrillation. 2018;10(5):1852.
  • Yener N, Oktar GL, Erer D, et al. Bicuspid aortic valve. Ann Thorac Cardiovasc Surg. 2002;8:264–267.
  • Piatti F, Sturla F, Bissell MM, et al. 4D flow analysis of BAV-related fluid-dynamic alterations: evidences of wall shear stress alterations in absence of clinically-relevant aortic anatomical remodelling. Front Physiol. 2017;8:441.
  • Meierhofer C, Schneider EP, Lyko C, et al. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J Cardiovasc Imaging. 2013;14:797–804.
  • Emendi M, Sturla F, Ghosh RP, et al. Patient-specific bicuspid aortic valve biomechanics: a magnetic resonance imaging integrated fluid-structure interaction approach. Ann Biomed Eng. 2020 Aug 17; doi:https://doi.org/10.1007/s10439-020-02571-4. Online ahead of print. PMID: 32804291.
  • Rigatelli G, and Zuin M. Left main stenosis stenting normalises wall shear stress of ascending aorta in bicuspid aortic valve. Heart Int. 2020;14(2):121-122. doi:https://doi.org/10.17925/HI.2020.14.2.121.
  • Cao K, Atkins SK, McNally A, et al. Simulations of morphotype-dependent hemodynamics in non-dilated bicuspid aortic valve aortas. J Biomech. 2017;50:63–70.
  • McNally A, Madan A, Sucosky P. Morphotype-dependent flow characteristics in bicuspid aortic valve ascending aortas: a benchtop particle image velocimetry study. FrontPhysiol. 2017;8:44.
  • Ando M, Okita Y, Morota T, et al. Thoracic aortic aneurysm associated with congenital bicuspid aorticvalve. Cardiovasc Surg. 1998;6(6):629–634.
  • Piatti F, Sturla F, Bissell MM, et al. 4D flow analysis of BAV-related fluid-dynamic alterations: evidences of wall shear stress alterations in absence of clinically-relevant aortic anatomical remodelling. Front Physiol. 2017;8:441.
  • Michelena HI, Prakash SK, Della Corte A, et al. Bicuspid aortic valve identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCON). Circulation. 2014;129:2691–2704.
  • Riesenkampff E, Fernandes JF, Meier S, et al. Pressure fields by Flow-Sensitive4D, velocity-encoded CMR in patients with aortic coarctation. JACC Cardiovasc Imaging. 2014;7:920–926.
  • Arzani A, Dyverfeldt P, Ebbers T, et al. In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation. Ann Biomed Eng. 2012Apr;40(4):860–870. Epub 2011 Oct 21.
  • LaDisa JF Jr, Alberto Figueroa C, Vignon-Clementel IE, et al. Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng. 2011 Sep;133(9):091008.
  • LaDisa JF Jr, Dholakia RJ, Figueroa CA, et al. Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis. 2011 Sep-Oct;65:432–443. Epub. 2011 Jul 31.
  • Capelli C, Sauvage E, Giusti G, et al. Patient specific simulations for planning treatment in congenital heart disease. Interface Focus. 2018;8:20170021.
  • Villafañe J, Feinstein JA, Jenkins KJ, et al. Hot topics in tetralogy of Fallot. J Am Col Cardiol. 2013;62:2155–2166.
  • Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to thebedside. Vasc Endovascular Surg. 2003;37:47–57.
  • Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–248.
  • Galantowicz M, Cheatham JP, Phillips A, et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg. 2008;85:2063–2070.
  • Daley M, d’Udekem Y. The optimal Fontan operation: lateral tunnel or extracardiac conduit? J Thorac Cardiovasc Surg. 2020 Dec 28;S0022-5223(20)33445–0. DOI:https://doi.org/10.1016/j.jtcvs.2020.11.179.
  • Migliavacca F, Pennati G, Dubini G, et al. Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol. 2001;280:H2076–H2086.
  • Migliavacca F, Balossino R, Pennati G, et al. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech. 2006;39:1010–1020.
  • Dubini G, de Leval MR, Pietrabissa R, et al. A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J Biomech. 1996 Jan;29(1):111–121. PMID: 8839024
  • Baker CE, Corsini C, Cosentino D, et al. Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Effects of pulmonary artery banding and retrograde aortic arch obstruction on the hybrid palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2013 Dec;146(6):1341–1348.
  • Corsini C, Migliavacca F, Hsia TY, et al. Modeling of Congenital Hearts Alliance (MOCHA) Investigators. The influence of systemic-to-pulmonary arterial shunts and peripheral vasculature in univentricular circulations: focus on coronary perfusion and aortic arch hemodynamics through computational multi-domain modeling. J Biomech. 2018 Oct 5;79:97–104. Epub. 2018 Aug 4. PMID: 30097266.
  • Rijnberg FM, Hazekamp MG, Wentzel JJ, et al. Energetics of blood flow in cardiovascular disease: concept and clinical implications of adverse energetics in patients with a Fontan circulation. Circulation. 2018;137:2393–2407.
  • Haggerty CM, Restrepo M, Tang E, et al. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamicsanalysis. Thorac Cardiovasc Surg. 2014;148:1481–1489.
  • Siallagan D, Loke YH, Olivieri L, et al. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. J Thorac Cardiovasc Surg. 2018 Apr;155(4):1734–1742.
  • Trusty PM, Wei ZA, Slesnick TC, et al. The first cohort of prospective Fontan surgical planning patients with follow-up data: how accurate is surgical planning? J Thorac Cardiovasc Surg. 2019 Mar;157(3):1146–1155.
  • van Bakel TMJ, Lau KD, Hirsch-Romano J, et al. Patient-specific modeling of hemodynamics: supporting surgical planning in a Fontan circulation correction. J Cardiovasc Transl Res. 2018 Apr;11(2):145–155.
  • Trusty PM, Restrepo M, Kanter KR, et al. A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits. J Thorac Cardiovasc Surg. 2016;151:1529–1536.
  • Cosentino D, Capelli C, Derrick G, et al. Patient-specific computational models to support interventional procedures: a case study of complex aortic re-coarctation. EuroIntervention. 2015;11:669–672.
  • Tang E, Wei ZA, Fogel MA, et al. Fluid-structure interaction simulation of an intra-atrial Fontan connection. Biology (Basel). 2020 Nov 24;9(12):412. PMID: 33255292; PMCID: PMC7760396.
  • Schievano S, Taylor AM, Capelli C, et al., Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J Biomech. 2010; 43:687–693. 10. 1016/j.jbiomech.2009.10.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.