3,675
Views
3
CrossRef citations to date
0
Altmetric
Review

Intravascular lithotripsy during percutaneous coronary intervention: current concepts

, &
Pages 323-338 | Received 03 Feb 2022, Accepted 20 Apr 2022, Published online: 25 Apr 2022

References

  • Hill JM, Kereiakes DJ, Shlofmitz RA, et al. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol. 76(22): 2635–2646. 2020.
  • Allison MA, Criqui MH, Wright CM. Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(2):331–336.
  • Mintz GS, Popma JJ, Pichard AD, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91(7):1959–1965.
  • Sorini Dini C, Nardi G, Ristalli F, et al. Contemporary approach to heavily calcified coronary lesions. Interv Cardiol. 2019;14(3):154–163.
  • Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010;7(9):528–536.
  • Xian JZ, Lu M, Fong F, et al. Statin effects on vascular calcification: microarchitectural changes in aortic calcium deposits in aged hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 2021;41(4):e185–e92.
  • Vliegenthart R, Oudkerk M, Hofman A, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112(4):572–577.
  • Bourantas CV, Zhang YJ, Garg S, et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014;100(15):1158–1164.
  • Wong B, El-Jack S, Newcombe R, et al. Shockwave intravascular lithotripsy for calcified coronary lesions: first real-world experience. J Invasive Cardiol. 2019;31(3):46–48.
  • Mori S, Yasuda S, Kataoka Y, et al. Significant association of coronary artery calcification in stent delivery route with restenosis after sirolimus-eluting stent implantation. Circ J. 2009;73(10):1856–1863.
  • Kobayashi Y, Okura H, Kume T, et al. Impact of target lesion coronary calcification on stent expansion. Circ J. 2014;78(9):2209–2214.
  • Généreux P, Madhavan MV, Mintz GS, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) TRIALS. J Am Coll Cardiol. 2014;63(18):1845–1854.
  • Wiemer M, Butz T, Schmidt W, et al. Scanning electron microscopic analysis of different drug eluting stents after failed implantation: from nearly undamaged to major damaged polymers. Catheter Cardiovasc Interv. 2010;75(6):905–911.
  • Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7(5):510–518.
  • Kini AS, Vengrenyuk Y, Pena J, et al. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015;86(6):1024–1032.
  • Tang Z, Bai J, Su SP, et al. Cutting-balloon angioplasty before drug-eluting stent implantation for the treatment of severely calcified coronary lesions. J Geriatr Cardiol. 2014;11(1):44–49.
  • Lingeman JE, McAteer JA, Gnessin E, et al. Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol. 2009;6(12):660–670.
  • Talso M, Tefik T, Mantica G, et al. Extracorporeal shockwave lithotripsy: current knowledge and future perspectives. Minerva Urol Nefrol. 2019;71(4):365–372.
  • Brodmann M, Werner M, Brinton TJ, et al. Safety and performance of lithoplasty for treatment of calcified peripheral artery lesions. J Am Coll Cardiol. 2017;70(7):908–910.
  • Brodmann M, Werner M, Holden A, et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: results of Disrupt PAD II. Catheter Cardiovasc Interv. 2019;93(2):335–342.
  • Tepe G, Brodmann M, Werner M, et al. Intravascular lithotripsy for peripheral artery calcification: 30-day outcomes from the randomized disrupt PAD III trial. JACC Cardiovasc Interv. 2021;14(12):1352–1361.
  • Kereiakes DJ, Virmani R, Hokama JY, et al. Principles of intravascular lithotripsy for calcific plaque modification. JACC Cardiovasc Interv. 14(12): 1275–1292. 2021.
  • Ali ZA, Brinton TJ, Hill JM, et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017;10(8):897–906.
  • Shockwave Medical I. Shockwave intravascular lithotripsy (IVL) system with the shockwave C2 coronary intravascular lithotripsy (IVL) catheter instructions for use (IFU). Food and Drug Administration; 2021. [cited 2022 Jan 22]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf20/P200039C.pdf
  • Brinton TJ, Ali ZA, Hill JM, et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation. 2019;139(6):834–836.
  • Ali ZA, Nef H, Escaned J, et al. Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the disrupt CAD II study. Circ Cardiovasc Interv. 2019;12(10):e008434.
  • Hill J, Kereiakes D, Stone G. TCT-1 intravascular lithotripsy for treatment of severely calcified coronary lesions: one-year results from the disrupt CAD III study. J Am Coll Cardiol. 2021;78(19_Supplement_S):B1–B.
  • Généreux P, Lee AC, Kim CY, et al. Orbital atherectomy for treating de novo severely calcified coronary narrowing (1-year results from the pivotal ORBIT II trial). Am J Cardiol. 2015;115(12):1685–1690.
  • Saito S, Yamazaki S, Takahashi A, et al. Intravascular lithotripsy for vessel preparation in severely calcified coronary arteries prior to stent placement - primary outcomes from the japanese disrupt CAD IV study. Circ J. 2021;85(6):826–833.
  • Hisamatsu T, Liu K, Chan C, et al. Coronary artery calcium progression among the US and Japanese men. Circ Cardiovasc Imaging. 2019;12(2):e008104.
  • Bryniarski KL, Yamamoto E, Sugiyama T, et al. Differences in coronary plaque morphology between East Asian and western white patients: an optical coherence tomography study. Coron Artery Dis. 2018;29(7):597–602.
  • Kohsaka S, Kimura T, Goto M, et al. Difference in patient profiles and outcomes in Japanese versus american patients undergoing coronary revascularization (collaborative study by CREDO-Kyoto and the texas heart institute research database). Am J Cardiol. 2010;105(12):1698–1704.
  • Wong B, El-Jack S, Newcombe R, et al. Calcified coronary lesions treated with intravascular lithotripsy: one-year outcomes. J Invasive Cardiol. 2020;32(7):E200–E1.
  • Aksoy A, Salazar C, Becher MU, et al. Intravascular lithotripsy in calcified coronary lesions: a prospective, observational, multicenter registry. Circ Cardiovasc Interv. 2019;12(11):e008154.
  • Aziz A, Bhatia G, Pitt M, et al. Intravascular lithotripsy in calcified-coronary lesions: a real-world observational, European multicenter study. Catheter Cardiovasc Interv. 98(2): 225–235. 2021.
  • El Jattari H, Holvoet W, De Roeck F, et al. Intracoronary lithotripsy in calcified coronary lesions: a multicenter observational study. J Invasive Cardiol. 2022;34(1):E24–E31.
  • Rola P, Włodarczak A, Kulczycki JJ, et al. Feasibility of the intravascular lithotripsy in coronary artery disease. short-term outcomes of the lower-silesia shockwave registry. Kardiol Pol. 2021;79(10):1133–1135.
  • Cosgrove C, Hanratty CG, Hill JM, et al. Intravascular lithotripsy for treatment of calcific coronary lesions in ST elevation myocardial infarction. Catheter Cardiovasc Interv. 2021;99(2):322–328.
  • Prati F, Kodama T, Romagnoli E, et al. Suboptimal stent deployment is associated with subacute stent thrombosis: optical coherence tomography insights from a multicenter matched study. from the CLI foundation investigators: the CLI-THRO study. Am Heart J. 2015;169(2):249–256.
  • Kang SJ, Mintz GS, Park DW, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis. Circ Cardiovasc Interv. 2011;4(1):9–14.
  • Seif S, Kumar A, Arya S, et al. Intravascular lithotripsy to treat an underexpanded coronary stent during index procedure: a case report study. Avicenna J Med. 2021;11(1):54–57.
  • Włodarczak S, Rola P, Barycki M, et al. Successful shockwave intravascular lithotripsy of an underexpanded stent after a month from primary implantation. Kardiol Pol. 2022;80(3):359–360.
  • Yeoh J, Cottens D, Cosgrove C, et al. Management of stent underexpansion using intravascular lithotripsy-Defining the utility of a novel device. Catheter Cardiovasc Interv. 2021;97(1):22–29.
  • Ielasi A, Moscarella E, Testa L, et al. IntravaScular lithotripsy for the management of undilatable coronary stEnt: the SMILE registry. Cardiovasc Revasc Med. 21(12): 1555–1559. 2020.
  • Brunner FJ, Becher PM, Waldeyer C, et al. Intravascular lithotripsy for the treatment of calcium-mediated coronary in-stent restenoses. J Invasive Cardiol. 2021;33(1):E25–E31.
  • Szolc P, Guzik B, Wiewiórka Ł, et al. Intravascular lithotripsy for the treatment of a heavily calcified recurrent in-stent restenosis in patient with chronic coronary syndrome. Kardiol Pol. 2021;79(10):1159–1160.
  • Salazar C, Escaned J, Tirado G, et al. Intravascular lithotripsy for recurrent restenosis caused by severe calcific neoatherosclerosis. EuroIntervention. 2020;16(4):e351–e2.
  • Yousif N, Bardooli F, Hussain T, et al. Precision percutaneous coronary intervention of a complex lesion. Rev Recent Clin Trials. 2021;16(2):220–224.
  • Lee T, Shlofmitz RA, Song L, et al. The effectiveness of excimer laser angioplasty to treat coronary in-stent restenosis with peri-stent calcium as assessed by optical coherence tomography. EuroIntervention. 2019;15(3):e279–e88.
  • De Maria GL, Scarsini R, Banning AP. Management of calcific coronary artery lesions: is it time to change our interventional therapeutic approach? JACC Cardiovasc Interv. 2019;12(15):1465–1478.
  • Sakakura K, Funayama H, Taniguchi Y, et al. The incidence of slow flow after rotational atherectomy of calcified coronary arteries: a randomized study of low speed versus high speed. Catheter Cardiovasc Interv. 2017;89(5):832–840.
  • Buono A, Basavarajaiah S, Choudhury A, et al. “RotaTripsy” for severe calcified coronary artery lesions: insights from a real-world multicenter cohort. Cardiovasc Revasc Med. 2021;37:78–81.
  • Jurado-Román A, Gonzálvez A, Galeote G, et al. RotaTripsy: combination of rotational atherectomy and intravascular lithotripsy for the treatment of severely calcified lesions. JACC Cardiovasc Interv. 2019;12(15):e127–e9.
  • Chen G, Zrenner B, Pyxaras SA. Combined rotational atherectomy and intravascular lithotripsy for the treatment of severely calcified in-stent neoatherosclerosis: a mini-review. Cardiovasc Revasc Med. 2019;20(9):819–821.
  • Cosgrove CS, Wilson SJ, Bogle R, et al. Intravascular lithotripsy for lesion preparation in patients with calcific distal left main disease. EuroIntervention. 2020;16(1):76–79.
  • Wong B, El-Jack S, Khan A, et al. Treatment of heavily calcified unprotected left main disease with lithotripsy: the First Case Series. J Invasive Cardiol. 2019;31(6):E143–E7.
  • Rola P, Włodarczak A, Kulczycki JJ, et al. Efficacy and safety of shockwave intravascular lithotripsy (S-IVL) in calcified unprotected left main percutaneous coronary intervention - short-term outcomes. Postepy Kardiol Interwencyjnej. 2021;17(4):344–348.
  • Riley RF, Sapontis J, Kirtane AJ, et al. Prevalence, predictors, and health status implications of periprocedural complications during coronary chronic total occlusion angioplasty. EuroIntervention. 2018;14(11):e1199–e206.
  • Karacsonyi J, Karmpaliotis D, Alaswad K, et al. Impact of calcium on chronic total occlusion percutaneous coronary interventions. Am J Cardiol. 2017;120(1):40–46.
  • Øksnes A, Cosgrove C, Walsh S, et al. Intravascular lithotripsy for calcium modification in chronic total occlusion percutaneous coronary intervention. J Interv Cardiol. 2021;2021:9958035.
  • Rola P, Włodarczak A, Barycki M, et al. Shockwave intravascular lithotripsy as a novel strategy for balloon undilatable heavily calcified chronic total occlusion lesions. Cardiol J. 2021. https://doi.org/10.5603/CJ.a2021.0112.
  • Buono A, Ielasi A, De Blasio G, et al. “Shock-pella”: combined management of an undilatable ostial left circumflex stenosis in a complex high-risk interventional procedure patient. Cardiol J. 2020;27(4):427–428.
  • Cicovic A, Cicovic S, Wong B, et al. A quicker pace: shockwave lithotripsy pacing with electromechanical capture. JACC Cardiovasc Interv. 2019;12(17):1739–1740.
  • Wilson SJ, Spratt JC, Hill J, et al. Incidence of “shocktopics” and asynchronous cardiac pacing in patients undergoing coronary intravascular lithotripsy. EuroIntervention. 2020;15(16):1429–1435.
  • Iwańczyk S, Włodarczak A, Hiczkiewicz J, et al. Feasibility of intravascular lithotripsy for calcific coronary lesions: a multi-institutional experience. Catheter Cardiovasc Interv. 2021;98(4):E540–E7.
  • Sinclair H, Fan L, Fahy E, et al. Intravascular imaging–guided intracoronary lithotripsy: first real-world experience. Health Sci Rep. 2021;4(3):e307.
  • Wiens EJ, Sklar JC, Wei YH, et al. Real-world outcomes in treatment of highly calcified coronary lesions with intravascular shockwave lithotripsy. Indian Heart J. 2021;73(5):653–655.
  • Umapathy S, Keh YS, Wong N, et al. Real-World Experience of Coronary Intravascular Lithotripsy in an Asian Population: a Retrospective, Observational, Single-Center, All-Comers Registry. J Invasive Cardiol. 2021;33(6):E417–E24.
  • Rao RS, Sharma GN, Kunal S, et al. Safety and procedural outcomes of intravascular lithotripsy in calcified coronaries in Indian patients. Indian Heart J. 2022;74(2):91–95.
  • Sattar Y, Ullah W, Mir T, et al. Safety and efficacy of coronary intravascular lithotripsy for calcified coronary arteries- a systematic review and meta-analysis. Expert Rev Cardiovasc Ther. 2021;19(1):89–98.
  • Thygesen K , Alpert J , Jaffe AS et al. Fourth universal definition of myocardial infarction. Rev Esp Cardiol. 2018;72:1–72.
  • Moussa ID, Klein LW, Shah B, et al. Consideration of a new definition of clinically relevant myocardial infarction after coronary revascularization: an expert consensus document from the Society for Cardiovascular Angiography and Interventions (SCAI). J Am Coll Cardiol. 2013;62(17):1563–1570.
  • Rishad S, McENTEGART M, Ford TJ, et al. Comparative study of costs and resource utilisation of rotational atherectomy versus intravascular lithotripsy for percutaneous coronary intervention. Minerva Cardiol Angiol. 2021. https://doi.org/10.23736/S2724-5683.21.05681-7.
  • Kassimis G, Ziakas A, Didagelos M, et al. Shockwave coronary intravascular lithotripsy system for heavily calcified de novo lesions and the need for a cost-effectiveness analysis. Cardiovasc Revasc Med. 2021;37:128–134 .