602
Views
2
CrossRef citations to date
0
Altmetric
Review

Pathophysiology and mechanisms of Acute Coronary Syndromes: atherothrombosis, immune-inflammation, and beyond

, & ORCID Icon
Pages 351-362 | Received 26 Jan 2022, Accepted 04 May 2022, Published online: 17 May 2022

References

  • Badimon JJ, Ibanez B, Cimmino G. Genesis and dynamics of atherosclerotic lesions: implications for early detection. Cerebrovascular Dis. 2009;27(1):38–47.
  • Cimmino G, Conte S, Morello A, et al. The complex puzzle underlying the pathophysiology of acute coronary syndromes: from molecular basis to clinical manifestations. Expert Rev Cardiovasc Ther. 2012 Dec;10(12):1533–1543.
  • Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–1422.
  • Ross R, Epstein FH. Atherosclerosis — an inflammatory disease. N Engl J Med. 1999 Jan 14;340(2):115–126.
  • Meerarani P, Moreno PR, Cimmino G, et al. Atherothrombosis: role of tissue factor; link between diabetes, obesity and inflammation. Indian J Exp Biol. 2007 Jan;45(1):103–110.
  • Crea F, Libby P. Acute coronary syndromes: the way forward from mechanisms to precision treatment. Circulation. 2017 Sep 19;136(12):1155–1166.
  • Abdu FA, Mohammed A-Q, Liu L, et al. Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA): a review of the current position. Cardiology. 2020;145(9):543–552.
  • Lowe GD. Local inflammation, endothelial dysfunction and fibrinolysis in coronary heart disease. Clin Sci. 2006 Mar;110(3):327–328.
  • Grassi D, Desideri G, Ferri C. Cardiovascular risk and endothelial dysfunction: the preferential route for atherosclerosis. Curr Pharm Biotechnol. 2011 Sep;12(9):1343–1353.
  • Grover-Paez F, Zavalza-Gomez AB. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract. 2009 Apr;84(1):1–10.
  • Jowett JB. Interplay of genetic and environmental factors: innate immunity genetic polymorphisms in MBL2 affect endothelial dysfunction and risk of atherosclerosis. Atherosclerosis. 2010 Jan;208(1):32–33.
  • Santos-Gallego CG, Badimon JJ, Rosenson RS. Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am. 2014 Dec;43(4):913–947.
  • Hutter R, Speidl WS, Valdiviezo C, et al. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1alpha activation: a novel aspect of angiogenesis in atherosclerosis. J Cardiovasc Transl Res. 2013 Aug;6(4):558–569.
  • Boren J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020 Jun 21;41(24):2313–2330.
  • Libby P. The changing landscape of atherosclerosis. Nature. 2021 Apr;592(7855):524–533.
  • Khalil MF, Wagner WD, Goldberg IJ. Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004 Dec;24(12):2211–2218.
  • Wolf D, Ley K. Immunity and Inflammation in Atherosclerosis. Circ Res. 2019 Jan 18;124(2):315–327.
  • Riksen NP, Stienstra R. Metabolism of innate immune cells: impact on atherosclerosis. Curr Opin Lipidol. 2018 Oct;29(5):359–367.
  • Ruuth M, Nguyen SD, Vihervaara T, et al. Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. Eur Heart J. 2018 Jul 14;39(27):2562–2573.
  • Llorente-Cortés V, Martínez-González J, Badimon L. LDL receptor–related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1572–1579.
  • Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016 Feb 19;118(4):692–702.
  • Arbustini E, Grasso M, Diegoli M, et al. Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. Am J Cardiol. 1991 Sep 3;68(7):36B–50B.
  • Kim Y, Kim B-K, Johnson TW, et al. Silent plaque rupture in the left main stem assessed by optical coherence tomography. Cardiol J. 2020;27(3):316–317.
  • Lutgens E, van Suylen R-J, Faber BC, et al. Atherosclerotic plaque rupture: local or systemic process? Arterioscler Thromb Vasc Biol. 2003 Dec;23(12):2123–2130.
  • Ford TJ, Corcoran D, Berry C. Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need. Heart (British Cardiac Society). 2018 Feb;104(4):284–292.
  • Cimmino G, Loffredo FS, Morello A, et al. Immune-Inflammatory Activation in Acute Coronary Syndromes: a Look into the Heart of Unstable Coronary Plaque. Curr Cardiol Rev. 2017;13(2):110–117.
  • Cimmino G, Cirillo P. Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis. Cardiovasc Diagn Ther. 2018 Oct;8(5):581–593.
  • Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011 Mar;12(3):204–212.
  • Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb Haemost. 2011 Nov;106(11):779–786.
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011 May 19;473(7347):317–325.
  • Michel J-B, Martin-Ventura JL, Nicoletti A, et al. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis. 2014 Jun;234(2):311–319.
  • Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015 Aug 11;278(5):483–493.
  • Libby P. Inflammation in atherosclerosis. Nature. 2002 Dec 19-26;420(6917):868–874.
  • Stefanadis C, Antoniou C-K, Tsiachris D, et al. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc. 2017 Mar 17;6(3). https://doi.org/10.1161/JAHA.117.005543.
  • Hafiane A. Vulnerable plaque, characteristics, detection, and potential therapies. J Cardiovasc Dev Dis. 2019 Jul 27;6(3):26.
  • Ezekowitz JA, Bakal JA, Westerhout CM, et al. The relationship between meteorological conditions and index acute coronary events in a global clinical trial. Int J Cardiol. 2013 Oct 3;168(3):2315–2321.
  • Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015 Jul 25;386(9991):369–375.
  • Wolf K, Schneider A, Breitner S, et al. Air temperature and the occurrence of myocardial infarction in Augsburg, Germany. Circulation. 2009 Sep 1;120(9):735–742.
  • Saeki K, Obayashi K, Iwamoto J, et al. The relationship between indoor, outdoor and ambient temperatures and morning BP surges from inter-seasonally repeated measurements. J Hum Hypertens. 2014 Aug;28(8):482–488.
  • Eldwood PC, Beswick A, O’Brien JR, et al. Temperature and risk factors for ischaemic heart disease in the Caerphilly prospective study. Br Heart J. 1993 Dec;70(6):520–523.
  • Neild PJ, Syndercombe-Court D, Keatinge WR, et al. Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clin Sci. 1994 Jan;86(1):43–48.
  • Raphael CE, Heit JA, Reeder GS, et al. Coronary embolus: an underappreciated cause of acute coronary syndromes. JACC: Cardiovascular Interventions. 2018 Jan 22;11(2):172–180.
  • Kolodgie FD, Virmani R, Finn AV, et al. Embolic myocardial infarction as a consequence of atrial fibrillation: a prevailing disease of the future. Circulation. 2015 Jul 28;132(4):223–226.
  • Liu G, Yang P, He Y. Left ventricular mural thrombus and dual coronary embolization associated with hyperthyroid cardiomyopathy and atrial fibrillation: a case report. BMC Cardiovasc Disord. 2017 May 19;17(1):128.
  • Lacunza-Ruiz FJ, Munoz-Esparza C, Garcia-de-Lara J. Coronary embolism and thrombosis of prosthetic mitral valve. JACC: Cardiovascular Interventions. 2014 Oct;7(10):e127–8.
  • Garachemani A, Eshtehardi P, Meier B. Paradoxical emboli through the patent foramen ovale as the suspected cause of myocardial and renal infarction in a 48-year-old woman. Catheter Cardiovasc Interv. 2007 Dec 1;70(7):1010–1012.
  • Correia LCL, Andrade BB, Borges VM, et al. Prognostic value of cytokines and chemokines in addition to the GRACE Score in non-ST-elevation acute coronary syndromes. Clin Chim Acta. 2010 Apr 2;411(7–8):540–545.
  • Li -J-J, Jiang H, Huang C-X, et al. Elevated level of plasma C-reactive protein in patients with unstable angina: its relations with coronary stenosis and lipid profile. Angiology. 2002 May-Jun;53(3):265–272.
  • Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004 Mar 22;Suppl 116(6):9S–16S.
  • Michowitz Y, Arbel Y, Wexler D, et al. Predictive value of high sensitivity CRP in patients with diastolic heart failure. Int J Cardiol. 2008 Apr 25;125(3):347–351.
  • Niccoli G, Biasucci LM, Biscione C, et al. Independent prognostic value of C-reactive protein and coronary artery disease extent in patients affected by unstable angina. Atherosclerosis. 2008 Feb;196(2):779–785.
  • Zamani P, Schwartz GG, Olsson AG, et al. Inflammatory biomarkers, death, and recurrent nonfatal coronary events after an acute coronary syndrome in the MIRACL study. J Am Heart Assoc. 2013 Jan 28;2(1):e003103.
  • Ridker PM, Thuren T, Zalewski A, et al. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011 Oct;162(4):597–605.
  • Date H, Imamura T, Sumi T, et al. Effects of interleukin-6 produced in coronary circulation on production of C-reactive protein and coronary microvascular resistance. Am J Cardiol. 2005 Apr 1;95(7):849–852.
  • Tsuda K. C-reactive protein and nitric oxide production in ischemic stroke. author reply e472. Stroke. 2009 Jun;40(6):e471.
  • Forte L, Cimmino G, Loffredo F, et al. C-reactive protein is released in the coronary circulation and causes endothelial dysfunction in patients with acute coronary syndromes. Int J Cardiol. 2011 Oct 6;152(1):7–12.
  • Montecucco F, Steffens S, Burger F, et al. C-reactive protein (CRP) induces chemokine secretion via CD11b/ICAM-1 interaction in human adherent monocytes. J Leukoc Biol. 2008 Oct;84(4):1109–1119.
  • Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000 Oct 31;102(18):2165–2168.
  • Portelinha A, Belo L, Tejera E, et al. Adhesion molecules (VCAM-1 and ICAM-1) and C-reactive protein in women with history of preeclampsia. Acta Obstet Gynecol Scand. 2008;87(9):969–971.
  • Postadzhiyan AS, Tzontcheva AV, Kehayov I, et al. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and their association with clinical outcome, troponin T and C-reactive protein in patients with acute coronary syndromes. Clin Biochem. 2008 Feb;41(3):126–133.
  • Cirillo P, Golino P, Calabro P, et al. C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc Res. 2005 Oct 1;68(1):47–55.
  • Guo S, Meng S, Chen B, et al. C-reactive protein can influence the proliferation, apoptosis, and monocyte chemotactic protein-1 production of human umbilical vein endothelial cells. DNA Cell Biol. 2011 Mar;30(3):157–162.
  • Cimmino G, Ragni M, Cirillo P, et al. C-reactive protein induces expression of matrix metalloproteinase-9: a possible link between inflammation and plaque rupture. Int J Cardiol. 2012 Nov 14. https://doi.org/10.1016/j.ijcard.2012.10.040.
  • Gresele P, Falcinelli E, Loffredo F, et al. Platelets release matrix metalloproteinase-2 in the coronary circulation of patients with acute coronary syndromes: possible role in sustained platelet activation. Eur Heart J. 2011 Feb;32(3):316–325.
  • Galve-de Rochemonteix B, Wiktorowicz K, Kushner I, et al. C-reactive protein increases production of IL-1α, IL-1β, and TNF-α, and expression of mRNA by human alveolar macrophages. J Leukoc Biol. 1993 Apr;53(4):439–445.
  • Xie L, Chang L, Guan Y, et al. C-reactive protein augments interleukin-8 secretion in human peripheral blood monocytes. J Cardiovasc Pharmacol. 2005 Nov;46(5):690–696.
  • Hattori Y, Matsumura M, Kasai K. Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc Res. 2003 Apr 1;58(1):186–195.
  • Eisenhardt SU, Habersberger J, Murphy A, et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res. 2009 Jul 17;105(2):128–137.
  • Thiele JR, Habersberger J, Braig D, et al. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: in vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation. 2014 Jul 1;130(1):35–50.
  • Mai W, Liao Y. Targeting IL-1β in the Treatment of Atherosclerosis. Front Immunol. 2020;11:589654.
  • Vromman A, Ruvkun V, Shvartz E, et al. Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur Heart J. 2019 Aug 7;40(30):2482–2491.
  • Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27(1):519–550.
  • Su J-H, Luo M-Y, Liang N, et al. Interleukin-6: a novel target for cardio-cerebrovascular diseases. Front Pharmacol. 2021;12:745061.
  • Epelman S, Mann DL. Communication in the heart: the role of the innate immune system in coordinating cellular responses to ischemic injury. J Cardiovasc Transl Res. 2012 Dec;5(6):827–836.
  • De Palma R, Del Galdo F, Abbate G, et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation. 2006 Feb 7;113(5):640–646.
  • Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000 Jun 27;101(25):2883–2888.
  • Liuzzo G, Kopecky SL, Frye RL, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999 Nov 23;100(21):2135–2139.
  • Wang C, Jin R, Zhu X, et al. Function of CD147 in atherosclerosis and atherothrombosis. J Cardiovasc Transl Res. 2015 Feb;8(1):59–66.
  • Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011 Apr 29;145(3):341–355.
  • Hedrick CC. Lymphocytes in atherosclerosis. Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):253–257.
  • Tse K, Tse H, Sidney J, et al. T cells in atherosclerosis. Int Immunol. 2013 Nov;25(11):615–622.
  • Doherty TM. T-cell regulation of macrophage function. Curr Opin Immunol. 1995 Jun;7(3):400–404.
  • Profumo E, Buttari B, Tosti ME, et al. Plaque-infiltrating T lymphocytes in patients with carotid atherosclerosis: an insight into the cellular mechanisms associated to plaque destabilization. J Cardiovasc Surg (Torino). 2013 Jun;54(3):349–357.
  • Huber SA, Sakkinen P, David C, et al. T helper–cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation. 2001 May 29;103(21):2610–2616.
  • Caligiuri G, Paulsson G, Nicoletti A, et al. Evidence for antigen-driven T-cell response in unstable angina. Circulation. 2000 Sep 5;102(10):1114–1119.
  • Chistiakov DA, Orekhov AN, Bobryshev YV. Immune-inflammatory responses in atherosclerosis: role of an adaptive immunity mainly driven by T and B cells. Immunobiology. 2016 Sep;221(9):1014–1033.
  • Cirillo P, Cimmino G, D’Aiuto E, et al. Local cytokine production in patients with Acute Coronary Syndromes: a look into the eye of the perfect (cytokine) storm. Int J Cardiol. 2014 Sep;176(1):227–229.
  • Cheng X, Liao Y-H, Ge H, et al. TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol. 2005 May;25(3):246–253.
  • Quinn MT, Parthasarathy S, Fong LG, et al. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998.
  • Stemme S, Faber B, Holm J, et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3893–3897.
  • Li D, Mehta JL. Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res. 2005 Dec 1;68(3):353–354.
  • Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol. 2016 Sep;84:1–7.
  • Cimmino G, Cirillo P, Conte S, et al. Oxidized low-density lipoproteins induce tissue factor expression in T-lymphocytes via activation of lectin-like oxidized low-density lipoprotein receptor-1. Cardiovasc Res. 2020 May 1;116(6):1125–1135.
  • Taleb S, Tedgui A, Mallat Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):258–264.
  • Erbel C, Chen L, Bea F, et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. The Journal of Immunology. 2009 Dec 15;183(12):8167–8175.
  • Taleb S, Romain M, Ramkhelawon B, et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009 Sep 28;206(10):2067–2077.
  • Gistera A, Robertson A-KL, Andersson J, et al. Transforming growth factor–β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17–dependent pathway. Sci Transl Med. 2013 Jul 31;5(196):196ra100.
  • Cirillo P, Golino P, Piscione F, et al. Transcoronary Th-17 lymphocytes and acute coronary syndromes: new evidence from the crime scene? Int J Cardiol. 2011 Dec 1;153(2):215–216.
  • Erbel C, Dengler TJ, Wangler S, et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol. 2011 Jan;106(1):125–134.
  • De Palma R, Cirillo P, Ciccarelli G, et al. Expression of functional tissue factor in activated T-lymphocytes in vitro and in vivo: a possible contribution of immunity to thrombosis? Int J Cardiol. 2016 Sep 1;218:188–195.
  • Caligiuri G, Nicoletti A. Lymphocyte responses in acute coronary syndromes: lack of regulation spawns deviant behaviour. Eur Heart J. 2006 Nov;27(21):2485–2486.
  • Albany CJ, Trevelin SC, Giganti G, et al. Getting to the heart of the matter: the role of regulatory T-cells (tregs) in cardiovascular disease (CVD) and atherosclerosis. Front Immunol. 2019;10:2795.
  • Cimmino G, Golino P. Platelet biology and receptor pathways. J Cardiovasc Transl Res. 2013 Jun;6(3):299–309.
  • Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. Curr Trends Immunol. 2015;16:65–78.
  • Nurden AT. The biology of the platelet with special reference to inflammation, wound healing and immunity. Front Biosci. 2018 Jan 1;23(2):726–751.
  • Braun A, Anders HJ, Gudermann T, et al. Platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Front Oncol. 2021;11:665534.
  • Danenberg HD, Kantak N, Grad E, et al. C-reactive protein promotes monocyte-platelet aggregation: an additional link to the inflammatory-thrombotic intricacy. Eur J Haematol. 2007 Mar;78(3):246–252.
  • Kälsch T, Elmas E, Nguyen XD, et al. Endotoxin-induced effects on platelets and monocytes in an in vivo model of inflammation. Basic Res Cardiol. 2007 Sep;102(5):460–466.
  • Passacquale G, Vamadevan P, Pereira L, et al. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One. 2011;6(10):e25595.
  • Furman MI, Benoit SE, Barnard MR, et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol. 1998 Feb;31(2):352–358.
  • Hamilos M, Sarma J, Ostojic M, et al. Interference of drug-eluting stents with endothelium-dependent coronary vasomotion: evidence for device-specific responses. Circ Cardiovasc Interv. 2008 Dec;1(3):193–200.
  • Di Serafino L, Sarma J, Dierickx K, et al. Monocyte-platelets aggregates as cellular biomarker of endothelium- dependent coronary vasomotor dysfunction in patients with coronary artery disease. J Cardiovasc Transl Res. 2014;7(1):1–8.
  • Lu Y, Thavarajah T, Gu W, et al. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):e159–e170.
  • Fernandez-Hernando C, Suarez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol. 2018 May;25(3):227–236.
  • Reddy MA, Das S, Zhuo C, et al. Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by miR-504. Arterioscler Thromb Vasc Biol. 2016 May;36(5):864–873.
  • Albinsson S, Sward K. Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease. Pharmacol Res. 2013 Sep;75:28–36.
  • Robinson HC, Baker AH. How do microRNAs affect vascular smooth muscle cell biology? Curr Opin Lipidol. 2012 Oct;23(5):405–411.
  • Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012 Feb 12;14(3):249–256.
  • Yun SH, Sim EH, Goh RY, et al. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:9060143.
  • Gnatenko DV, Dunn JJ, McCorkle SR, et al. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood. 2003 Mar 15;101(6):2285–2293.
  • Kieffer N, Guichard J, Farcet JP, et al. Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem. 1987 Apr 1;164(1):189–195.
  • Cimmino G, Tarallo R, Nassa G, et al. Activating stimuli induce platelet microRNA modulation and proteome reorganisation. Thromb Haemost. 2015 Jul;114(1):96–108.
  • Nassa G, Giurato G, Cimmino G, et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci Rep. 2018 Jan 11;8(1):498.
  • Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008 Sep 4;455(7209):64–71.
  • Pordzik J, Pisarz K, De Rosa S, et al. The potential role of platelet-related microRNAs in the development of cardiovascular events in high-risk populations, including diabetic patients: a review. Front Endocrinol (Lausanne). 2018;9:74.
  • Reis SE, Holubkov R, Conrad Smith AJ, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001 May;141(5):735–741.
  • Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143–153.
  • Pasupathy S, Air T, Dreyer RP, et al. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation. 2015 Mar 10;131(10):861–870.
  • Montone RA, Niccoli G, Russo M, et al. Clinical, angiographic and echocardiographic correlates of epicardial and microvascular spasm in patients with myocardial ischaemia and non-obstructive coronary arteries. Clin Res Cardiol. 2020 Apr;109(4):435–443.
  • Pirozzolo G, Seitz A, Athanasiadis A, et al. Microvascular spasm in non-ST-segment elevation myocardial infarction without culprit lesion (MINOCA). Clin Res Cardiol. 2020 Feb;109(2):246–254.
  • Ong P, Camici PG, Beltrame JF, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018 Jan 01;250:16–20.
  • Eggers KM, Hjort M, Baron T, et al. Morbidity and cause-specific mortality in first-time myocardial infarction with nonobstructive coronary arteries. J Intern Med. 2019 04; 285(4): 419–428.
  • Pelliccia F, Pasceri V, Niccoli G, et al. Predictors of Mortality in Myocardial Infarction and Nonobstructed Coronary Arteries: a Systematic Review and Meta-Regression. Am J Med. 2020 01; 133(1): 73–83.e4.
  • Nordenskjöld AM, Lagerqvist B, Baron T, et al. Reinfarction in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA): coronary findings and prognosis. Am J Med. 2019 03; 132(3): 335–346.
  • Piccirillo F, Carpenito M, Verolino G, et al. Changes of the coronary arteries and cardiac microvasculature with aging: implications for translational research and clinical practice. Mech Ageing Dev. 2019 12;184:111161.
  • Pries AR, Badimon L, Bugiardini R, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015 Dec 01;36(45):3134–3146.
  • Mangiacapra F, Viscusi MM, Paolucci L, et al. The pivotal role of invasive functional assessment in patients with myocardial infarction with non-obstructive coronary arteries (MINOCA). Front Cardiovasc Med. 2021;8:781485.
  • Lindahl B, Baron T, Albertucci M, et al. Myocardial infarction with non-obstructive coronary artery disease. EuroIntervention. 2021 Dec 03;17(11):e875–e887.
  • Heusch G, Baumgart D, Camici P, et al. alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation. 2000 Feb 15;101(6):689–694.
  • Kleinbongard P, Heusch G. A fresh look at coronary microembolization. l. 2022 Apr;19(4):265–280.
  • Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983 Aug;50(2):127–134.
  • Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985 Apr;71(4):699–708.
  • Davies MJ, Thomas AC, Knapman PA, et al. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation. 1986 Mar;73(3):418–427.
  • Frink RJ, Rooney PA, Trowbridge JO, et al. Coronary thrombosis and platelet/fibrin microemboli in death associated with acute myocardial infarction. Br Heart J. 1988 Feb;59(2):196–200.
  • Leach IH, Blundell JW, Rowley JM, et al. Acute ischaemic lesions in death due to ischaemic heart disease. An autopsy study of 333 cases of out-of-hospital death. Eur Heart J. 1995 Sep;16(9):1181–1185.
  • Dörge H, Neumann T, Behrends M, et al. Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol. 2000 Dec;279(6):H2587–92.
  • Thielmann M, Dörge H, Martin C, et al. Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res. 2002 Apr 19;90(7):807–813.
  • Li L, Zhao X, Lu Y, et al. Altered expression of pro- and anti-inflammatory cytokines is associated with reduced cardiac function in rats following coronary microembolization. Mol Cell Biochem. 2010 Sep;342(1–2):183–190.
  • Arras M, Strasser R, Mohri M, et al. Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res Cardiol. 1998 Apr;93(2):97–107.
  • Dörge H, Schulz R, Belosjorow S, et al. Coronary Microembolization: the Role of TNF- α in Contractile Dysfunction. J Mol Cell Cardiol. 2002 Jan;34(1):51–62.
  • Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618–e651.
  • Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol. 2019;114(6):45.
  • Sheehan FH, Braunwald E, Canner P, et al. The effect of intravenous thrombolytic therapy on left ventricular function: a report on tissue-type plasminogen activator and streptokinase from the Thrombolysis in Myocardial Infarction (TIMI Phase I) trial. Circulation. 1987 Apr;75(4):817–829.
  • Fernández-Jiménez R, García-Prieto J, Sánchez-González J, et al. Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. J Am Coll Cardiol. 2015 Aug 18;66(7):816–828.
  • Higginson LA, White F, Heggtveit HA, et al. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Circulation. 1982 Jan;65(1):62–69.
  • Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974 Dec;54(6):1496–1508.
  • Di Serafino L, Mangiacapra F, Pyxaras S, et al. Relationship between peripheral arterial reactive hyperemia and the index of myocardial resistance in patients undergoing invasive coronary angiography. Int J Cardiol. 2021;333:8–13.
  • Mangiacapra F, Peace AJ, Di Serafino L, et al. Intracoronary enalaprilat to reduce microvascular damage during percutaneous coronary intervention (ProMicro) study. J Am Coll Cardiol. 2013;61(6):615–621.
  • Mangiacapra F, Di Gioia G, Pellicano M, et al. Effects of prasugrel versus clopidogrel on coronary microvascular function in patients undergoing elective PCI. J Am Coll Cardiol. 2016;68(2):235–237.
  • Barbato E, Sarno G, Berza CT, et al. Impact of alpha- and beta-adrenergic receptor blockers on fractional flow reserve and index of microvascular resistance. J Cardiovasc Transl Res. 2014 Dec;7(9):803–809.
  • Mangiacapra F, Pellicano M, Di Serafino L, et al. Platelet reactivity and coronary microvascular impairment after percutaneous revascularization in stable patients receiving clopidogrel or prasugrel. Atherosclerosis. 2018 11;278:23–28.
  • Bairey Merz CN, Pepine CJ, Walsh MN, et al. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017 Mar 14;135(11):1075–1092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.