139
Views
2
CrossRef citations to date
0
Altmetric
Review

Point-of-care heart failure platform: where are we now and where are we going to?

ORCID Icon &
Pages 419-429 | Received 26 Feb 2022, Accepted 18 May 2022, Published online: 30 May 2022

References

  • Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–1356.
  • Tsao CW, Aday AW, Almarzooq ZI, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart association. Circulation. 2022;145(8):e153–e639. CIR0000000000001052.
  • GBD. Disease and injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2017;392(10159):1789–1858. 2018.
  • de Boer Ar, Vaartjes I, Gohar A, et al. Heart failure with preserved, mid-range, and reduced ejection fraction across health care settings: an observational study. ESC Heart Fail. 2022;9(1):363–372.
  • de Boer Ra, Nayor M, deFilippi CR, et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 2018;3(3):215–224.
  • McDonagh TA, Metra M, Adamo M, et al.; ESC Scientific Document Group. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726.
  • Heidenreich PA, Bozkurt B, Aguilar D, et al. AHA/ACC/HFSA Guideline for the Management of Heart Failure: a Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;101161C. https://doi.org/10.1161/CIR.0000000000001063.
  • Bhambhani V, Kizer JR, Lima JAC, et al. Predictors and outcomes of heart failure with mid-range ejection fraction. Eur J Heart Fail. 2018;20(4):651–659.
  • Liang M, Bian B, Yang Q. Characteristics and long-term prognosis of patients with reduced, mid-range, and preserved ejection fraction: a systemic review and meta-analysis. Clin Cardiol. 2022;45(1):5–17.
  • van Riet Ee, Hoes AW, Wagenaar KP, et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–252.
  • Roger VL. Epidemiology of heart failure: a contemporary perspective. Circ Res. 2021;128(10):1421–1434.
  • Rosano GMC, Moura B, Metra M, et al. Patient profiling in heart failure for tailoring medical therapy. A consensus document of the heart failure association of the european society of cardiology. Eur J Heart Fail. 2021;23(6):872–881.
  • Greene SJ, Butler J, Albert NM, et al. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry. J Am Coll Cardiol. 2018;72(4):351–366.
  • Greene SJ, Fonarow GC, DeVore AD, et al. Titration of medical therapy for heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019;73(19):2365–2383.
  • Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019;25(1):70–74.
  • Kashou AH, Medina-Inojosa JR, Noseworthy PA, et al. Artificial intelligence-augmented electrocardiogram detection of left ventricular systolic dysfunction in the general population. Mayo Clin Proc. 2021;96(10):2576–2586.
  • Adedinsewo D, Carter RE, Attia Z, et al. Artificial intelligence-enabled ecg algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ Arrhythm Electrophysiol. 2020;13(8):e008437.
  • Bachtiger P, Petri CF, Scott FE, et al. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study. Lancet Digit Health. 2022;4(2):e117–e125.
  • Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689.
  • Berezin AE. Biological markers of cardiovascular diseases. Part 4. Diagnostic and prognostic value of biological markers at risk stratification among patients with heart failure. OmniScriptum S.R.L., Chisinau, MD-2012, Republic of Moldova: Lambert Academic Publishing; 2015. p. 329.
  • Alawieh H, Chemaly TE, Alam S, et al. Towards point-of-care heart failure diagnostic platforms: BNP and NT-proBNP biosensors. Sensors (Basel). 2019;19(22):5003.
  • Maisel AS, Krishnaswamy P, Nowak RM, et al. Breathing not properly multinational study investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161–167.
  • Wieczorek SJ, Wu AH, Christenson R, et al. A rapid B-type natriuretic peptide assay accurately diagnoses left ventricular dysfunction and heart failure: a multicenter evaluation. Am Heart J. 2002;144(5):834–839.
  • Rawlins ML, Owen WE, Roberts WL. Performance characteristics of four automated natriuretic peptide assays. Am J Clin Pathol. 2005;123(3):439–445.
  • Wu AH, Packer M, Smith A, et al. Analytical and clinical evaluation of the Bayer ADVIA Centaur automated B-type natriuretic peptide assay in patients with heart failure: a multisite study. Clin Chem. 2004;50(5):867–873.
  • Lee-Lewandrowski E, Januzzi JL, Green SM, et al. Multi-center validation of the response biomedical corporation RAMP NT-proBNP assay with comparison to the roche diagnostics GmbH elecsys proBNP assay. Clin Chim Acta. 2007;386(1–2):20–24.
  • Mongia SK, La’ulu SL, Apple FS, et al. Performance characteristics of the architect brain natriuretic peptide (BNP) assay: a two site study. Clin Chim Acta. 2008;391(1–2):102–105.
  • FDA clears bioMérieux’s VIDAS® NT-proBNP, a high medical value test for diagnosis of heart failure. Press release. bioMérieux Corporate website. 2008 Mar 13. Available at http://www.biomerieux.com/servlet/srt/bio/portail/dynPage?open=PRT_NWS_REL&doc=PRT_NWS_REL_G_PRS_RLS_160&crptprm=ZmlsdGVyPQ.
  • Tamm NN, Semenov AG, Seferian KR, et al. Measurement of B-type natriuretic peptide by two assays utilizing antibodies with different epitope specificity. Clin Biochem. 2011;44(2–3):257–259.
  • de Guadiana-Romualdo L G, Ramos-Arenas V, Campos-Rodríguez V, et al. In vitro stability of B-type natriuretic peptide (BNP) in plasma stored under different conditions when measured with the lumipulse® assay. Scand J Clin Lab Invest. 2019;79(6):455–458.
  • Zaninotto M, Mion MM, Di Serio F, et al. PATHFAST NT-proBNP (N-terminal-pro B type natriuretic peptide): a multicenter evaluation of a new point-of-care assay. Clin Chem Lab Med. 2010;48(7):1029–1034. PMID: 20406130.
  • Zugck C, Nelles M, Katus HA, et al. Multicentre evaluation of a new point-of-care test for the determination of NT-proBNP in whole blood. Clin Chem Lab Med. 2006;44(10):1269–1277.
  • Jørgensen B, Bertsch T, Bröker HJ, et al. Multicentre evaluation of a second generation point-of-care assay with an extended range for the determination of N-terminal pro-brain natriuretic peptide. Clin Lab. 2012;58(5–6):515–525. PMID: 22783583.
  • Khezri BS, Carlsson L, Larsson A. Evaluation of the alere NT-proBNP test for point of care testing. J Clin Lab Anal. 2016;30(4):290–292.
  • Collin-Chavagnac D, Dehoux M, Schellenberg F, et al., Société Française de Biologie Clinique Cardiac Markers Working Group. Head-to-head comparison of 10 natriuretic peptide assays. Clin Chem Lab Med. 2015;53(11):1825–1837.
  • Roalfe AK, Taylor CJ, Kelder JC, et al. Diagnosing heart failure in primary care: individual patient data meta-analysis of two European prospective studies. ESC Heart Fail. 2021;8(3):2193–2201.
  • Huusko J, Purmonen T, Toppila I, et al. Real-world clinical diagnostics of heart failure patients with reduced or preserved ejection fraction. ESC Heart Fail. 2020;7(3):1039–1048.
  • Lingervelder D, Koffijberg H, Kusters R, et al. Point-of-care testing in primary care: a systematic review on implementation aspects addressed in test evaluations. Int J Clin Pract. 2019;73(10):e13392.
  • Ontario Health (Quality). Use of B-Type Natriuretic Peptide (BNP) and N-Terminal proBNP (NT-proBNP) as diagnostic tests in adults with suspected heart failure: a health technology assessment. Ont Health Technol Assess Ser. 2021;21(2):1–125. PMID: 34055110; PMCID: PMC8129637.
  • Berezin AE. Prognostication in different heart failure phenotypes: the role of circulating biomarkers. J Circ Biomark. 2016;5:6.
  • Alp NJ, Bell JA, Shahi M. A rapid troponin-I-based protocol for assessing acute chest pain. Qjm. 2001;94(12):687–694.
  • Müller-Bardorff M, Freitag H, Scheffold T, et al. Development and characterization of a rapid assay for bedside determinations of cardiac troponin T. Circulation. 1995;92(10):2869–2875.
  • Alan HB. Recent advances in point-of-care diagnostics for cardiac markers. Ejifcc. 2014;25(2):170–177. PMID: 27683464; PMCID: PMC4975292.
  • Apple FS, Fantz CR, Collinson PO. IFCC committee on clinical application of cardiac bio-markers. implementation of high-sensitivity and point-of-care cardiac troponin assays into practice: some different thoughts. Clin Chem. 2021;67(1):70–78.
  • Ramparany L, Ramirez J, Nizou JY, et al. Evaluation of four rapid immunochromatographic tests for the detection of cardiac troponin I. Clin Vaccine Immunol. 2011;18(3):414–417.
  • Body R, Morris N, Collinson P. Single test rule-out of acute myocardial infarction using the limit of detection of a new high-sensitivity troponin I assay. Clin Biochem. 2020;78:4–9.
  • Melentiev PN, Son LV, Kudryavtsev DS, et al. Ultrasensitive detection and imaging of single cardiac troponin-T molecules. ACS Sens. 2020;5(11):3576–3583.
  • Zhang B, Morales AW, Peterson R, et al. Label-free detection of cardiac troponin I with a photonic crystal biosensor. Biosens Bioelectron. 2014;58:107–113.
  • Kozinski M, Krintus M, Kubica J, et al. High-sensitivity cardiac troponin assays: from improved analytical performance to enhanced risk stratification. Crit Rev Clin Lab Sci. 2017;54(3):143–172.
  • Gao S, Li J. Development of a novel homogeneous nanoparticle-based assay for rapid and high-throughput quantitation of the sST2 protein in human serum. Int J Nanomedicine. 2020;15:10539–10546.
  • Dieplinger B, Egger M, Gegenhuber A, et al. Analytical and clinical evaluation of a rapid quantitative lateral flow immunoassay for measurement of soluble ST2 in human plasma. Clin Chim Acta. 2015;451(Pt B):310–315.
  • Dikme R, Padak M, Işık M, et al. Soluble ST2 as a potential biomarker in pericardial fluid of coronary artery patientsю braz. J Cardiovasc Surg. 2021;36(5):677–684.
  • McCullough PA, Olobatoke A, Vanhecke TE. Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med. 2011;12(4):200–210.
  • Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(11):1054–1060.
  • Gruson D, Mancini M, Ahn SA, et al. Measurement of Galectin-3 with the ARCHITECT assay: clinical validity and cost-effectiveness in patients with heart failure. Clin Biochem. 2014;47(12):1006–1009.
  • Khan SQ, Ng K, Dhillon O, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009;30(9):1057–1065.
  • Banerjee S, McCormack S. Natriuretic peptide testing for monitoring of heart failure therapy: a review of clinical effectiveness, clinical utility, cost-effectiveness, and guidelines [internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2019 Aug 19 PMID: 31693326.
  • Murphy SP, Ibrahim NE, Januzzi JL Jr. Heart failure with reduced ejection fraction: a review. JAMA. 2020;324(5):488–504.
  • Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–3317.
  • Barutaut M, Fournier P, Peacock WF, et al. sST2 adds to the prognostic value of Gal-3 and BNP in chronic heart failure. Acta Cardiol. 2020;75(8):739–747.
  • Alhejily WA. High sensitivity troponins in patients with elevated prohormone of beta natriuretic peptide and acute heart failure (HIGH TRIP trial). Sci Rep. 2022;12(1):1838.
  • Topf A, Mirna M, Ohnewein B, et al. The diagnostic and therapeutic value of multimarker analysis in heart failure. An approach to biomarker-targeted therapy. Front Cardiovasc Med. 2020;7:579567.
  • Pufulete M, Maishman R, Dabner L, et al. Effectiveness and cost-effectiveness of serum B-type natriuretic peptide testing and monitoring in patients with heart failure in primary and secondary care: an evidence synthesis, cohort study and cost-effectiveness model. Health Technol Assess. 2017;21(40):1–150.
  • Mark DB, Cowper PA, Anstrom KJ, et al. Economic and quality-of-life outcomes of natriuretic peptide-guided therapy for heart failure. J Am Coll Cardiol. 2018;72(21):2551–2562.
  • Logan JK, Mentz RJ. Targeting natriuretic peptide levels in heart failure with therapy: does “X” Really mark the spot? Curr Heart Fail Rep. 2019;16(6):250–256.
  • Felker GM, Anstrom KJ, Adams KF, et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2017;318(8):713–720.
  • Ibrahim NE, Januzzi JL Jr. The future of biomarker-guided therapy for heart failure after the guiding evidence-based therapy using biomarker intensified treatment in heart failure (GUIDE-IT) study. Curr Heart Fail Rep. 2018;15(2):37–43.
  • Sanders-van Wijk S, van Asselt Ad, Rickli H, et al. TIME-CHF investigators. cost-effectiveness of N-terminal pro-B-type natriuretic-guided therapy in elderly heart failure patients: results from TIME-CHF (trial of intensified versus standard medical therapy in elderly patients with congestive heart failure). JACC Heart Fail. 2013;1(1):64–71.
  • Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted treatment to lessen serial cardiac readmissions and death) trial. J Am Coll Cardiol. 2009;55(1):53–60.
  • Ouwerkerk W, Zwinderman AH, Ng LL, et al. Biomarker-Guided versus guideline-based treatment of patients with heart failure: results from BIOSTAT-CHF. J Am Coll Cardiol. 2018;71(4):386–398.
  • Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J. 2009;158(3):422–430.
  • Rocca HP B-L, Bektas S. Biomarker guided therapy in chronic heart failure. Card Fail Rev. 2015;1(2):96–101.
  • Huet F, Nicoleau J, Dupuy AM, et al. STADE-HF (sST2 As a help for management of HF): a pilot study. ESC Heart Fail. 2020;7(2):774–778.
  • Chen H, Chen C, Fang J, et al. Circulating galectin-3 on admission and prognosis in acute heart failure patients: a meta-analysis. Heart Fail Rev. 2020;25(2):331–341.
  • Wu C, Lv Z, Li X, et al. Galectin-3 in predicting mortality of heart failure: a systematic review and meta-analysis. Heart Surg Forum. 2021;24(2):E327–E332.
  • Srivatsan V, George M, Shanmugam E. Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand? Eur J Prev Cardiol. 2015;22(9):1096–1110.
  • Motiwala SR, Szymonifka J, Belcher A, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 2013;15(10):1157–1163.
  • Hwang R, Bruning J, Morris NR, et al. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: a randomised trial. J Physiother. 2017;63(2):101–107.
  • Piotrowicz E, Piepoli MF, Jaarsma T, et al. Telerehabilitation in heart failure patients: the evidence and the pitfalls. Int J Cardiol. 2016;220:408–413.
  • Sano M, Majima T. Development of a home-based nursing intervention model for patients with heart failure: a qualitative feasibility study. Inquiry. 2021;58:469580211067448.
  • Desai AS, Maclean T, Blood AJ, et al. Remote optimization of guideline-directed medical therapy in patients with heart failure with reduced ejection fraction. JAMA Cardiol. 2020;5(12):1430–1434.
  • Karamat S, Ahmed SA, Naqvi SJ. An excellent model to increase adherence to guideline-directed medical therapy-with far-reaching implications. JAMA Cardiol. 2021;6(6):726.
  • Koehler F, Koehler K, Deckwart O, et al. Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. Lancet. 2018;392(10152):1047–1057.
  • Bhatt AS, Varshney AS, Nekoui M, et al. Virtual optimization of guideline-directed medical therapy in hospitalized patients with heart failure with reduced ejection fraction: the IMPLEMENT-HF pilot study. Eur J Heart Fail. 2021;23(7):1191–1201.
  • Hill L, Lambrinou E, Antoniou S. Optimizing evidence-based heart failure medication: every contact counts. Eur J Heart Fail. 2021;23(7):1202–1204.
  • Brouwers RW, Kraal JJ, Traa SC, et al. Effects of cardiac telerehabilitation in patients with coronary artery disease using a personalised patient-centred web application: protocol for the smartcare-CAD randomised controlled trial. BMC Cardiovasc Disord. 2017;17(1):46.
  • Piotrowicz E. The management of patients with chronic heart failure: the growing role of e-Health. Expert Rev Med Devices. 2017;14(4):271–277.
  • Spindler H, Leerskov K, Joensson K, et al. Conventional rehabilitation therapy versus telerehabilitation in cardiac patients: a comparison of motivation, psychological distress, and quality of life. Int J Environ Res Public Health. 2019;16(3):512.
  • Frederix I, Vanhees L, Dendale P, et al. A review of telerehabilitation for cardiac patients. J Telemed Telecare. 2015;21(1):45–53.
  • Cartwright M, Hirani SP, Rixon L, et al. Whole systems demonstrator evaluation team effect of telehealth on quality of life and psychological outcomes over 12 months (whole systems demonstrator telehealth questionnaire study): nested study of patient reported outcomes in a pragmatic, cluster randomised controlled trial. BMJ. 2013;346:f653.
  • Fiani B, Siddiqi I, Lee SC, et al. Telerehabilitation: development, application, and need for increased usage in the COVID-19 era for patients with spinal pathology. Cureus. 2020;12(9):e10563.
  • Taylor RS, Dalal H, Jolly K, et al. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2010;1:CD007130.
  • Skov Schacksen C, Henneberg NC, Muthulingam JA, et al. Effects of telerehabilitation interventions on heart failure management (2015-2020): scoping review. JMIR Rehabil Assist Technol. 2021;8(4):e29714.
  • Piotrowicz E, Mierzyńska A, Banach M, et al. Quality of life in heart failure patients undergoing hybrid comprehensive telerehabilitation versus usual care - results of the telerehabilitation in heart failure patients (TELEREH-HF) randomized clinical trial. Arch Med Sci. 2020;17(6):1599–1612.
  • Peng X, Su Y, Hu Z, et al. Home-based telehealth exercise training program in Chinese patients with heart failure: a randomized controlled trial. Medicine (Baltimore). 2018;97(35):e12069.
  • Chen YW, Wang CY, Lai YH, et al. Home-based cardiac rehabilitation improves quality of life, aerobic capacity, and readmission rates in patients with chronic heart failure. Medicine (Baltimore). 2018;97(4):e9629.
  • Jamal NE, Abi-Saleh B, Isma’eel H. Advances in telemedicine for the management of the elderly cardiac patient. J Geriatr Cardiol. 2021;18(9):759–767.
  • Long L, Mordi IR, Bridges C, et al. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Database Syst Rev. 2019;1(1):CD003331.
  • Taylor RS, Walker S, Ciani O, et al. Exercise-based cardiac rehabilitation for chronic heart failure: the EXTRAMATCH II individual participant data meta-analysis. Health Technol Assess. 2019;23(25):1–98.
  • Taylor RS, Sagar VA, Davies EJ, et al. Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev. 2014; 1(4):CD003331. Update in 2019 Jan 29.
  • Harwood AE, Russell S, Okwose NC, et al. A systematic review of rehabilitation in chronic heart failure: evaluating the reporting of exercise interventions. ESC Heart Fail. 2021;8(5):3458–3471.
  • Abraham LN, Sibilitz KL, Berg SK, et al. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst Rev. 2021;5(5):CD010876.
  • Bader F, Manla Y, Atallah B, et al. Heart failure and COVID-19. Heart Fail Rev. 2021;26(1):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.