290
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent advances in porcine cardiac xenotransplantation: from aortic valve replacement to heart transplantation

, , , , , & show all
Pages 597-608 | Received 06 May 2022, Accepted 08 Jul 2022, Published online: 21 Jul 2022

References

  • Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association. Circulation. 2022;145:e153–e639.
  • Colvin M, Smith JM, Ahn Y, et al. OPTN/SRTR 2019 Annual Data Report: heart. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2021;21(Suppl 2):356–440.
  • Dharmavaram N, Hess T, Jaeger H, et al. National trends in heart donor usage rates: are we efficiently transplanting more hearts? J Am Heart Assoc. 2021;10:e019655.
  • Bakhtiyar SS, Godfrey EL, Ahmed S, et al. Survival on the heart transplant waiting list. JAMA Cardiol. 2020;5:1227–1235.
  • Kilic A, Mathier MA, Hickey GW, et al. Evolving trends in adult heart transplant with the 2018 heart allocation policy change. JAMA Cardiol. 2021;6:159–167.
  • Wayda B, Sandhu AT, Parizo J, et al. Cost-effectiveness and system-wide impact of using hepatitis C-viremic donors for heart transplant. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2022;41:37–47.
  • Samsky MD, Patel CB, Owen A, et al. Ten-year experience with extended criteria cardiac transplantation. Circ Heart Fail. 2013;6:1230–1238.
  • Livi U, Bortolotti U, Luciani GB, et al. Donor shortage in heart transplantation. Is extension of donor age limits justified? J Thorac Cardiovasc Surg. 1994;107:1346–1354. discussion 1354-1355.
  • Dayoub JC, Cortese F, Anžič A, et al. The effects of donor age on organ transplants: a review and implications for aging research. Exp Gerontol. 2018;110:230–240.
  • Kobashigawa J, Zuckermann A, Macdonald P, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2014;33:327–340.
  • Schroder JN, D’Alessandro D, Esmailian F, et al. Successful utilization of extended criteria donor (ECD) hearts for transplantation - results of the OCSTM heart EXPAND trial to evaluate the effectiveness and safety of the OCS heart system to preserve and assess ECD hearts for transplantation. J Heart Lung Transplant. 2019;38:S42.
  • Lu T, Yang B, Wang R, et al. Xenotransplantation: current status in preclinical research. Front Immunol. 2020;10:3060.
  • Cooper DKC, Ekser B, Tector AJ. A brief history of clinical xenotransplantation. Int J Surg. 2015;23:205–210.
  • Hardy JD. The first lung transplant in man (1963) and the first heart transplant in man (1964). Transplant Proc. 1999;31:25–29.
  • Smood B, Hara H, Schoel LJ, et al. Genetically-engineered pigs as sources for clinical red blood cell transfusion: what pathobiological barriers need to be overcome? Blood Rev. 2019;35:7–17.
  • Cooper DK, Human PA, Lexer G, et al. Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J Heart Transplant. 1988;7:238–246.
  • Phelps CJ, Koike C, Vaught TD, et al. Production of α1,3-Galactosyltransferase–Deficient pigs. Science. 2003;299:411–414.
  • Cooper DKC, Good AH, Koren E, et al. Identification of α-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol. 1993;1:198–205.
  • Cooper DKC. Modifying the sugar icing on the transplantation cake. Glycobiology. 2016;26:571–581.
  • Galili U. The α-gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation. Biochimie. 2001;83:557–563.
  • Lai L, Kolber-Simonds D, Park K-W, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002;295:1089–1092.
  • Kolber-Simonds D, Lai L, Watt SR, et al. Production of α-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A. 2004;101:7335–7340.
  • Kuwaki K, Tseng Y-L, Dor FJMF, et al. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med. 2005;11:29–31.
  • Cooper DKC, Hara H, Banks CA, et al. The ‘Baby Fae’ baboon heart transplant – potential cause of rejection. Xenotransplantation. 2019;26:e12511.
  • Miwa Y, Kobayashi T, Nagasaka T, et al. Are N-glycolylneuraminic acid (Hanganutziu–Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation. 2004;11:247–253.
  • Basnet NB, Ide K, Tahara H, et al. Deficiency of N-glycolylneuraminic acid and Galα1-3Galβ1-4GlcNAc epitopes in xenogeneic cells attenuates cytotoxicity of human natural antibodies. Xenotransplantation. 2010;17:440–448.
  • Lutz AJ, Li P, Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and Galactose α-1,3-Galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation. 2013;20:27–35.
  • Tector AJ, Mosser M, Tector M, et al. The possible role of Anti-Neu5Gc as an obstacle in xenotransplantation. Front Immunol [Internet]. 2020;11. [cited 2022 Apr 20]. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2020.00622
  • Byrne G, Ahmad‐Villiers S, Du Z, et al. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation. 2018;25:e12394.
  • Byrne GW, Stalboerger PG, Du Z, et al. Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation. 2011;91:287–292.
  • Byrne GW, Du Z, Stalboerger P, et al. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation. 2014;21:543–554.
  • Feng H, Li T, Du J, et al. Both natural and induced Anti-Sda antibodies play important roles in GTKO Pig-to-Rhesus monkey xenotransplantation. Front Immunol [Internet]. 2022;13. [cited 2022 Apr 21]. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2022.849711
  • Estrada J, Martens G, Li P, et al. Evaluation of human and nonhuman primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation. 2015;22:194–202.
  • Martens GR, Reyes LM, Butler JR, et al. Humoral reactivity of renal Transplant-Waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs. Transplantation. 2017;101:e86–e92.
  • Janeway J CA, Travers P, Walport M, et al. The complement system and innate immunity. Immunobiol Immune Syst Health Dis 5th Ed [Internet]. 2001 [cited 2022 Apr 21]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27100/
  • Zhou H, Hara H, Cooper DKC. The complex functioning of the complement system in xenotransplantation. Xenotransplantation. 2019;26:e12517.
  • Leventhal JR, Dalmasso AP, Cromwell JW, et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation. 1993;55:857–865. discussion 865-866.
  • Pruitt SK, Kirk AD, Bollinger RR, et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation. 1994;57:363–370.
  • Diamond LE, Quinn CM, Martin MJ, et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 2001;71:132–142.
  • White DJG, Oglesby T, Liszewski MK, et al. Expression of human decay accelerating factor or membrane cofactor protein genes on mouse cells inhibits lysis by human complement. Transpl Int. 1992;5:S648–S650.
  • Dalmasso AP, Vercellotti GM, Platt JL, et al. Inhibition of complement-mediated endothelial cell cytotoxicity by decay-accelerating factor. Potential for prevention of xenograft hyperacute rejection. Transplantation. 1991;52:530–533.
  • Walsh LA, Tone M, Waldmann H. Transfection of human CD59 complementary DNA into rat cells confers resistance to human complement. Eur J Immunol. 1991;21:847–850.
  • Miyagawa S, Maeda A, Toyama C, et al. Aspects of the complement system in new era of xenotransplantation. Front Immunol [Internet]. 2022;13. [cited 2022 Apr 21]. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2022.860165
  • Samy KP, Butler JR, Li P, et al. The role of costimulation blockade in solid organ and islet xenotransplantation. J Immunol Res. 2017;2017:8415205.
  • McGregor CGA, Byrne GW. Porcine to human heart transplantation: is clinical application now appropriate? J Immunol Res. 2017;2017:e2534653.
  • Mohiuddin MM, Singh AK, Corcoran PC, et al. Genetically engineered pigs and target specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg. 2014;148:1106–1114.
  • Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138.
  • Cowan PJ, Robson SC, d’Apice AJF. Controlling coagulation dysregulation in xenotransplantation. Curr Opin Organ Transplant. 2011;16:214–221.
  • Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg. 2015;23:296–300.
  • Singh AK, Chan JL, DiChiacchio L, et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation. 2019;26:e12465.
  • Denner J. Porcine endogenous retroviruses and xenotransplantation, 2021. Viruses. 2021;13:2156.
  • Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997;3:282–286.
  • Niu D, Wei H-J, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357:1303–1307.
  • Patel PM, Connolly MR, Coe TM, et al. Minimizing ischemia reperfusion injury in xenotransplantation. Front Immunol [Internet]. 2021;12. [cited 2022 Apr 21]. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2021.681504
  • Längin M, Reichart B, Steen S, et al. Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation. Xenotransplantation. 2021;28:e12636.
  • Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018;564:430–433.
  • Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev. 2022;27:71–91.
  • Lesnik JJ, Singh GK, Balfour IC, et al. Steroid-induced hypertrophic cardiomyopathy following stem cell transplantation in a neonate: a case report. Bone Marrow Transplant. 2001;27:1105–1108.
  • Wolf E, Kemter E, Klymiuk N, et al. Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim Front Rev Mag Anim Agric. 2019;9:13–20.
  • Aslan JE, Tormoen GW, Loren CP, et al. S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation. Blood. 2011;118:3129–3136.
  • Goerlich CE, Griffith B, and Hanna P, et al. The growth of xenotransplanted hearts can be reduced with growth hormone receptor knockout pig donors. J Thorac Cardiovasc Surg. 2021; S0022-5223(21):01261–7. DOI:10.1016/j.jtcvs.2021.07.051.
  • Pierson RN, Fishman JA, Lewis GD, et al. Progress toward cardiac xenotransplantation. Circulation. 2020;142:1389–1398.
  • Reyes LM, Estrada JL, Wang ZY, et al. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol Baltim Md 1950. 2014;193:5751–5757.
  • Yue Y, Kan Y, Xu W, et al. Extensive mammalian germline genome engineering. bioRxiv. 2019. DOI:10.1101/2019.12.17.876862.
  • Yang L, Church G, Zhao H-Y, et al. Porcine germline genome engineering. Proc Natl Acad Sci U S A. 2021;118:e2004836117.
  • Binet JP, Carpentier A, Langlois J, et al. Implantation of heterogenic valves in the treatment of aortic cardiopathies. C R Hebd Seances Acad Sci Ser Sci Nat. 1965;261:5733–5734.
  • Manji RA, Lee W, Cooper DKC. Xenograft bioprosthetic heart valves: past, present and future. Int J Surg Lond Engl. 2015;23:280–284.
  • Carpentier A, Lemaigre G, Robert L, et al. Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg. 1969;58:467–483.
  • Kostyunin AE, Yuzhalin AE, Rezvova MA, et al. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc. 2020;9:e018506.
  • Manji RA, Menkis AH, Ekser B, et al. Porcine bioprosthetic heart valves: the next generation. Am Heart J. 2012;164:177–185.
  • Stein PD, Wang CH, Riddle JM, et al. Leukocytes, platelets, and surface microstructure of spontaneously degenerated porcine bioprosthetic valves. J Card Surg. 1988;3:253–261.
  • Simionescu DT. Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther. 2004;4:1971–1985.
  • Levy RJ, Schoen FJ, Levy JT, et al. Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol. 1983;113:143–155.
  • Dahm M, Lyman WD, Schwell AB, et al. Immunogenicity of glutaraldehyde-tanned bovine pericardium. J Thorac Cardiovasc Surg. 1990;99:1082–1090.
  • Vincentelli A, Latrémouille C, Zegdi R, et al. Does glutaraldehyde induce calcification of bioprosthetic tissues? Ann Thorac Surg. 1998;66:S255–258.
  • Grabenwöger M, Fitzal F, Gross C, et al. Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis. 2000;9:104–109. discussion 110-111.
  • Manji RA, Zhu LF, Nijjar NK, et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006;114:318–327.
  • McGregor CGA, Carpentier A, Lila N, et al. Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. J Thorac Cardiovasc Surg. 2011;141:269–275.
  • Morris T. James Hardy and the first heart transplant. Lancet. 2017;389:2280–2281.
  • Cooper DKC. Christiaan Barnard—The surgeon who dared: the story of the first human-to-human heart transplant. Glob Cardiol Sci Pract. 2018;2018:11.
  • Bailey LL, Nehlsen-Cannarella SL, Concepcion W, et al. Baboon-to-Human cardiac xenotransplantation in a neonate. JAMA. 1985;254:3321–3329.
  • Farr M, Stehlik J. Heart xenotransplant: a door that is finally opening. Circulation. 2022;145:871–873.
  • Porrett PM, Orandi BJ, Kumar V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant. 2022;22:1037–1053.
  • Kuehn BM. Xenotransplants Make Progress. Kidney News. 2022;14:1–5.
  • Reardon S. First pig-to-human heart transplant: what can scientists learn? Nature. 2022;601:305–306.
  • Cookson C. Gene editing: pig hearts and the new era of organ transplants. Financ Times [Internet]. [updated 2022 Feb 2; cited 2022 Apr 22]. Available from: https://www.ft.com/content/72c888a8-c0e3-4d66-8446-b554ad523529
  • Brooks M. Man who received first modified pig heart transplant dies [Internet]. WebMD. [cited 2022 Apr 22]. Available from: https://www.webmd.com/heart-disease/news/20220309/man-with-pig-heart-dies
  • Rajab TK. Evidence-based surgical hypothesis: partial heart transplantation can deliver growing valve implants for congenital cardiac surgery. Surgery. 2021;169:983–985.
  • Rajab T, Kwon J, and Gerry B. Aortic valve replacement in neonates: an unsolved problem with limited quality of evidence. Ann Thorac Surg. 2021; 115(5):1755. doi:10.1016/j.athoracsur.2021.03.078.
  • Dijkman PE, Fioretta ES, Frese L, et al. Heart valve replacements with regenerative capacity. Transfus Med Hemother. 2016;43:282–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.