368
Views
0
CrossRef citations to date
0
Altmetric
Review

Lung injury following cardiopulmonary bypass: a clinical update

, , , , &
Pages 871-880 | Received 18 Sep 2022, Accepted 15 Nov 2022, Published online: 01 Dec 2022

References

  • Rong LQ, Di Franco A, Gaudino M. Acute respiratory distress syndrome after cardiac surgery. J Thorac Dis. 2016;8(10):E1177–E1186.
  • Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination consensus committee. J Crit Care. 1994;9(1):72–81.
  • Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010;23(4):243–252.
  • Clark SC. Lung injury after cardiopulmonary bypass. Perfusion. 2006;21(4):225–228.
  • Golovkin AS, Matveeva VG, Kudryavtsev IV, et al. Perioperative dynamics of TLR2, TLR4, and TREM-1 expression in monocyte subpopulations in the setting of on-pump coronary artery bypass surgery. ISRN Inflamm. 2013;2013:817901.
  • Anderson BO, Brown JM, Shanley PF, et al. Marginating neutrophils are reversibly adherent to normal lung endothelium. Surgery. 1991;109(1):51–61.
  • Sato H, Yamamoto K, Kakinuma A, et al. Accelerated activation of the coagulation pathway during cardiopulmonary bypass in aortic replacement surgery: a prospective observational study. J Cardiothorac Surg. 2015;10(1):84.
  • Boisclair MD, Lane DA, Philippou H, et al. Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood. 1993;82(11):3350–3357.
  • Wu Y. Contact pathway of coagulation and inflammation. Thromb J. 2015;13(1):17.
  • Basora M, Gomar C, Escolar G, et al. Platelet function during cardiac surgery and cardiopulmonary bypass with low-dose aprotinin. J Cardiothorac Vasc Anesth. 1999;13(4):382–387.
  • Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci. 2010;67(4):499–511.
  • Smyth SS, Mcever RP, Weyrich AS, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7(11):1759–1766.
  • Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4): 463–469.
  • Stahl GL, Shernan SK, Smith PK, et al. Complement activation and cardiac surgery: a novel target for improving outcomes. Anesth Analg. 2012;115(4):759–771.
  • Raja SG, Dreyfus GD. Modulation of systemic inflammatory response after cardiac surgery. Asian Cardiovasc Thorac Ann. 2005;13(4):382–395.
  • Sandler N, Kaczmarek E, Itagaki K, et al. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation. Heart Lung Circ. 2018;27(1):122–129.
  • Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010;672395:1–21.
  • Leventhal JS, Schroppel B. Toll-like receptors in transplantation: sensing and reacting to injury. Kidney Int. 2012;81(9):826–832.
  • Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–175.
  • Dybdahl B, Wahba A, Lien E, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002;105(6):685–690.
  • Haque A, Kunimoto F, Narahara H, et al. High mobility group box 1 levels in on and off-pump cardiac surgery patients. Int Heart J. 2011;52(3):170–174.
  • Lam NY, Rainer TH, Chan LY, et al. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem. 2003;49(8):1286–1291.
  • Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285): 104–107.
  • Vallejo JG. Role of toll-like receptors in cardiovascular diseases. Clin Sci (Lond). 2011;121(1):1–10.
  • Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol. 2003;3(5):371–382.
  • Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther. 2010;127(2):175–188.
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–397.
  • McGhan LJ, Jaroszewski DE. The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation. Injury. 2012;43(2):129–136.
  • Wang Y, Abarbanell AM, Herrmann JL, et al. Toll-like receptor signaling pathways and the evidence linking toll-like receptor signaling to cardiac ischemia/reperfusion injury. Shock. 2010;34(6):548–557.
  • Hadley JS, Wang JE, Michaels LC, et al. Alterations in inflammatory capacity and TLR expression on monocytes and neutrophils after cardiopulmonary bypass. Shock. 2007;27(5):466–473.
  • Krejsek J, Kunes P, Kolackova M, et al. Expression of toll-like receptors 2 and 4 on innate immunity cells modulated by cardiac surgical operation. Scand J Clin Lab Invest. 2008;68(8):749–758.
  • Chalk K, Meisel C, Spies C, et al. Dysfunction of alveolar macrophages after cardiac surgery and postoperative pneumonia?–An observational study. Crit Care. 2013;17(6):R285.
  • Krejsek J, Koláčková M, Manďák J, et al. TLR2 and TLR4 expression on blood monocytes and granulocytes of cardiac surgical patients is not affected by the use of cardiopulmonary bypass. Acta Medica (Hradec Kralove). 2013;56(2):57–66.
  • Tsai CS, Chen D-L, Lin S-J, et al. TNF-alpha inhibits toll-like receptor 4 expression on monocytic cells via tristetraprolin during cardiopulmonary bypass. Shock. 2009;32(1):40–48.
  • Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol. 2013;229(2):145–156.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.
  • Liangos O, Domhan S, Schwager C, et al. Whole blood transcriptomics in cardiac surgery identifies a gene regulatory network connecting ischemia reperfusion with systemic inflammation. PLoS One. 2010;5(10):e13658.
  • Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011;17(11):1381–1390.
  • Dahlgren C, Karlsson A. Respiratory burst in human neutrophils. J Immunol Methods. 1999;232(1–2):3–14.
  • Asimakopoulos G, Kohn A, Stefanou, DC, Haskard DO, et al. Leukocyte integrin expression in patients undergoing cardiopulmonary bypass. Ann Thorac Surg. 2000;69(4): 1192–1197.
  • Kawahito K, Kawakami M, Fujiwara T, et al. Proinflammatory cytokine levels in patients undergoing cardiopulmonary bypass. Does lung reperfusion influence the release of cytokines? ASAIO J. 1995;41(3):M775–8.
  • Kirklin JK, Westaby S, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983;86(6):845–857.
  • Schapira M, Despland E, Scott CF, et al. Purified human plasma kallikrein aggregates human blood neutrophils. J Clin Invest. 1982;69(5):1199–1202.
  • Chello M, Mastroroberto P, Quirino A, et al. Inhibition of neutrophil apoptosis after coronary bypass operation with cardiopulmonary bypass. Ann Thorac Surg. 2002;73(1):123–129. discussion 129-30.
  • Kalawski R, Bugajski P, Smielecki J, et al. Soluble adhesion molecules in reperfusion during coronary bypass grafting. Eur J Cardiothorac Surg. 1998;14(3):290–295.
  • Rinder CS, Bonan JL, Rinder HM, et al. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood. 1992;79(5):1201–1205.
  • Evans BJ, Haskard DO, Finch JR, et al. The inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in vivo. J Thorac Cardiovasc Surg. 2008;135(5):999–1006.
  • Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–689.
  • Petri B, Phillipson M, Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J Immunol. 2008;180(10):6439–6446.
  • Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25(1):619–647.
  • Phillipson M, Heit B, Colarusso P, et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203(12):2569–2575.
  • Bradfield PF, Scheiermann C, Nourshargh S, et al. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood. 2007;110(7):2545–2555.
  • Steeber DA, Venturi GM, Tedder TF. A new twist to the leukocyte adhesion cascade: intimate cooperation is key. Trends Immunol. 2005;26(1):9–12.
  • Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res. 2006;7(1):125.
  • Xing Z, Han J, Hao X, et al. Immature monocytes contribute to cardiopulmonary bypass-induced acute lung injury by generating inflammatory descendants. Thorax. 2017;72(3):245–255.
  • Malaviya R, Laskin JD, Laskin DL. Anti-TNFalpha therapy in inflammatory lung diseases. Pharmacol Ther. 2017;180:90–98.
  • Schlensak C, Doenst T, Preußer S, et al. Cardiopulmonary bypass reduction of bronchial blood flow: a potential mechanism for lung injury in a neonatal pig model. J Thorac Cardiovasc Surg. 2002;123(6):1199–1205.
  • Lin CY, Yang T-L, Hong G-J, et al. Enhanced intracellular heat shock protein 70 expression of leukocytes and serum interleukins release: comparison of on-pump and off-pump coronary artery surgery. World J Surg. 2010;34(4):675–681.
  • Chong AJ, Shimamoto A, Hampton CR, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg. 2004;128(2):170–179.
  • Kunes P, Lonsky V, Mandak J, et al. The inflammatory response in cardiac surgery. An up-to-date overview with the emphasis on the role of heat shock proteins (HSPs) 60 and 70. Acta Medica (Hradec Kralove). 2007;50(2):93–99.
  • Valen G, Hansson GK, Dumitrescu A, et al. Unstable angina activates myocardial heat shock protein 72, endothelial nitric oxide synthase, and transcription factors NFkappaB and AP-1. Cardiovasc Res. 2000;47(1):49–56.
  • Donato R, R. Cannon B, Sorci G, et al. Functions of S100 proteins. Curr Mol Med. 2013;13(1):24–57.
  • Nikolakopoulou Z, Hector LR, Creagh-Brown BC, et al. Plasma S100A8/A9 heterodimer is an early prognostic marker of acute kidney injury associated with cardiac surgery. Biomark Med. 2019;13(3):205–218.
  • Liu X, Chen Q, Shi S, et al. Plasma sRAGE enables prediction of acute lung injury after cardiac surgery in children. Crit Care. 2012;16(3):R91.
  • Stocker CF, Shekerdemian LS, Visvanathan K, et al. Cardiopulmonary bypass elicits a prominent innate immune response in children with congenital heart disease. J Thorac Cardiovasc Surg. 2004;127(5):1523–1525.
  • Oyama J, Blais C, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 2004;109(6):784–789.
  • Hua F, Ha T, Ma J, et al. Blocking the MyD88-dependent pathway protects the myocardium from ischemia/reperfusion injury in rat hearts. Biochem Biophys Res Commun. 2005;338(2):1118–1125.
  • Shimamoto A, Chong AJ, Yada M, et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation. 2006;114(1 Suppl): I270–4.
  • Suzuki T. Additional lung-protective perfusion techniques during cardiopulmonary bypass. Ann Thorac Cardiovasc Surg. 2010;16(3):150–155.
  • Magnusson L, Wicky S, Tyden H, et al. Repeated vital capacity manoeuvres after cardiopulmonary bypass: effects on lung function in a pig model. Br J Anaesth. 1998;80(5):682–684.
  • Loeckinger A, Kleinsasser A, Lindner KH, et al. Continuous positive airway pressure at 10 cm H(2)O during cardiopulmonary bypass improves postoperative gas exchange. Anesth Analg. 2000;91(3):522–527.
  • Ng CS, Arifi AA, Wan S, et al. Ventilation during cardiopulmonary bypass: impact on cytokine response and cardiopulmonary function. Ann Thorac Surg. 2008;85(1):154–162.
  • John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact Cardiovasc Thorac Surg. 2008;7(1):14–17.
  • Serraino GF, Marsico R, Musolino G, et al. Pulsatile cardiopulmonary bypass with intra-aortic balloon pump improves organ function and reduces endothelial activation. Circ J. 2012;76(5):1121–1129.
  • Siepe M, Goebel U, Mecklenburg A, et al. Pulsatile pulmonary perfusion during cardiopulmonary bypass reduces the pulmonary inflammatory response. Ann Thorac Surg. 2008;86(1): 115–122.
  • Beer L, Szerafin T, Mitterbauer A, et al. Continued mechanical ventilation during coronary artery bypass graft operation attenuates the systemic immune response. Eur J Cardiothorac Surg. 2013;44(2):282–287.
  • Adamik B, Kübler A, Gozdzik A, et al. Prolonged cardiopulmonary bypass is a risk factor for intestinal ischaemic damage and endotoxaemia. Heart Lung Circ. 2017;26(7):717–723.
  • Hall RI, Smith MS, Rocker G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesth Analg. 1997;85(4):766–782.
  • Nilsson L, Kulander L, Nyström S-O, et al. Endotoxins in cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1990;100(5):777–780.
  • Kats S, Schönberger JPAM, Brands R, et al. Endotoxin release in cardiac surgery with cardiopulmonary bypass: pathophysiology and possible therapeutic strategies. An update. Eur J Cardiothorac Surg. 2011;39(4):451–458.
  • Lehmann S, Dieterlen M-T, Flister A, et al. Differences of early immunological responses in on-pump versus off-pump cardiac surgery. Perfusion. 2019;34(5): 399–407.
  • Szerafin T, Horvath A, Moser B, et al. Apoptosis-specific activation markers in on- versus off-pump coronary artery bypass graft (CABG) patients. Clin Lab. 2006;52(5–6):255–261.
  • Apostolakis EE, Koletsis EN, Baikoussis NG, et al. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg. 2010;5(1):1.
  • de Vroege R, van Oeveren W, van Klarenbosch J, et al. The impact of heparin-coated cardiopulmonary bypass circuits on pulmonary function and the release of inflammatory mediators. Anesth Analg. 2004;98(6):1586–1594. table of contents.
  • Barnes PJ. How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol. 2006;148(3):245–254.
  • Chaney MA, Durazo-Arvizu RA, Nikolov MP, et al. Methylprednisolone does not benefit patients undergoing coronary artery bypass grafting and early tracheal extubation. J Thorac Cardiovasc Surg. 2001;121(3):561–569.
  • Walkden GJ, Verheyden V, Goudie R, et al. Increased perioperative mortality following aprotinin withdrawal: a real-world analysis of blood management strategies in adult cardiac surgery. Intensive Care Med. 2013;39(10):1808–1817.
  • Khan TA, Bianchi C, Araujo E, et al. Aprotinin preserves cellular junctions and reduces myocardial edema after regional ischemia and cardioplegic arrest. Circulation. 2005;112(9 Suppl):I196–201.
  • Lee DH, Choi HC, Lee KY, et al. Aprotinin inhibits vascular smooth muscle cell inflammation and proliferation via induction of HO-1. Korean J Physiol Pharmacol. 2009;13(2):123–129.
  • Hill GE, Springall DR, Robbins RA. Aprotinin is associated with a decrease in nitric oxide production during cardiopulmonary bypass. Surgery. 1997;121(4):449–455.
  • Hill GE, Pohorecki R, Alonso A, et al. Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth Analg. 1996;83(4):696–700.
  • Willcox BJ, Curb JD, Rodriguez BL. Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am J Cardiol. 2008;101(10A):75D–86D.
  • Katsiki N, Manes C. Is there a role for supplemented antioxidants in the prevention of atherosclerosis? Clin Nutr. 2009;28(1):3–9.
  • Jialal I, Devaraj S. Antioxidants and atherosclerosis: don’t throw out the baby with the bath water. Circulation. 2003;107(7):926–928.
  • Storti S, Cerillo A, Rizza A, et al. Coronary artery bypass grafting surgery is associated with a marked reduction in serum homocysteine and folate levels in the early postoperative period. Eur J Cardiothorac Surg. 2004;26(4):682–686.
  • Tossios P, Bloch W, Huebner A, et al. N-acetylcysteine prevents reactive oxygen species-mediated myocardial stress in patients undergoing cardiac surgery: results of a randomized, double-blind, placebo-controlled clinical trial. J Thorac Cardiovasc Surg. 2003;126(5):1513–1520.
  • Fischer UM, Tossios P, Huebner A, et al. Myocardial apoptosis prevention by radical scavenging in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2004;128(1):103–108.
  • Antoniades C, Bakogiannis C, Tousoulis D, et al. Preoperative atorvastatin treatment in CABG patients rapidly improves vein graft redox state by inhibition of Rac1 and NADPH-oxidase activity. Circulation. 2010;122(11 Suppl):S66–73.
  • Radaelli A, Loardi C, Cazzaniga M, et al. Inflammatory activation during coronary artery surgery and its dose-dependent modulation by statin/ACE-inhibitor combination. Arterioscler Thromb Vasc Biol. 2007;27(12):2750–2755.
  • Richter JA, Meisner H, Tassani P, et al. Drew-Anderson technique attenuates systemic inflammatory response syndrome and improves respiratory function after coronary artery bypass grafting. Ann Thorac Surg. 2000;69(1):77–83.
  • Zhang R, Wang Z, Wang H, et al. Optimal pulmonary artery perfusion mode and perfusion pressure during cardiopulmonary bypass. J Cardiovasc Surg (Torino). 2010;51(3):435–442.
  • Zhang R, Wang Z, Wang H, et al. Effective pulmonary artery perfusion mode during cardiopulmonary bypass. Heart Surg Forum. 2011;14(1):E18–21.
  • Chi D, Chen C, Shi Y, et al. Ventilation during cardiopulmonary bypass for prevention of respiratory insufficiency: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2017;96(12):e6454.
  • Lin X, Ma X, Cui X, et al. Effects of erythropoietin on lung injury induced by cardiopulmonary bypass after cardiac surgery. Med Sci Monit. 2020;26:e920039.
  • Nakata K, Okazaki M, Shimizu D, et al. Protective effects of anti-HMGB1 monoclonal antibody on lung ischemia reperfusion injury in mice. Biochem Biophys Res Commun. 2021;573:164–170.
  • He Y, Zhang Y, Wu H, et al. The role of annexin A1 peptide in regulating PI3K/Akt signaling pathway to reduce lung injury after cardiopulmonary bypass in rats. Perfusion 2021 2676591211052162 10.1177/02676591211052162
  • Zhang T, Lu L, Li M, et al. Exosome from BMMSC attenuates cardiopulmonary bypass-induced acute lung injury via YAP/beta-catenin pathway: down-regulation of pyroptosis. Stem Cells. 2022. 10.1093/stmcls/sxac063.
  • Li J, Gao P, Xu Y, et al. Probiotic Saccharomyces boulardii attenuates cardiopulmonary bypass-induced acute lung injury by inhibiting ferroptosis. Am J Transl Res. 2022;14(7):5003–5013.
  • Sun H, Zhao X and Tai Q, et al. Endothelial colony-forming cells reduced the lung injury induced by cardiopulmonary bypass in rats. Stem Cell Res Ther. 2020;11(1):246.
  • Picone AL, Lutz CJ, Finck C, et al. Multiple sequential insults cause post-pump syndrome. Ann Thorac Surg. 1999;67(4):978–985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.