266
Views
0
CrossRef citations to date
0
Altmetric
Review

Personalized biomechanical insights in atrial fibrillation: opportunities & challenges

, , , , &
Pages 817-837 | Received 12 Aug 2023, Accepted 18 Oct 2023, Published online: 01 Nov 2023

References

  • Kornej J, Börschel CS, Benjamin EJ, et al. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circ Res. 2020;127(1):4–20. doi: 10.1161/CIRCRESAHA.120.316340
  • van den Ham HA, Klungel OH, Singer DE, et al. Comparative performance of ATRIA, CHADS2, and CHA2DS2-VASc risk scores predicting stroke in patients with atrial fibrillation: results from a national primary care database. J Am Coll Cardiol. 2015;66(17):1851–1859. doi: 10.1016/j.jacc.2015.08.033
  • Choi SE, Sagris D, Hill A, et al. Atrial fibrillation and stroke. Expert Rev Cardiovasc Ther. 2023;21(1):35–56. doi: 10.1080/14779072.2023.2160319
  • Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54(2):230–246. doi: 10.1016/S0008-6363(02)00258-4
  • Yaghi S, Song C, Gray WA, et al. Left atrial appendage function and stroke risk. Stroke. 2015;46(12):3554–3559. doi: 10.1161/STROKEAHA.115.011273
  • Stojadinović P, Deshraju A, Wichterle D, et al. The hemodynamic effect of simulated atrial fibrillation on left ventricular function. J Cardiovasc Electrophysiol. 2022;33(12):2569–2577. doi: 10.1111/jce.15669
  • Qiu D, Peng L, Ghista DN, et al. Left atrial remodeling mechanisms associated with atrial fibrillation. Cardiovasc Eng Technol. 2021;12(3):361–372. doi: 10.1007/s13239-021-00527-w
  • Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart. 2019;105(24):1860–1867. doi: 10.1136/heartjnl-2018-314267
  • Honarbakhsh S, Schilling RJ, Orini M, et al. Structural remodeling and conduction velocity dynamics in the human left atrium: relationship with reentrant mechanisms sustaining atrial fibrillation. Heart Rhythm. 2019;16(1):18–25. doi: 10.1016/j.hrthm.2018.07.019
  • Liu H, Fan P, Jin F, et al. Dynamic and static biomechanical traits of cardiac fibrosis. Front Bioeng Biotechnol. 2022;10:1042030. doi: 10.3389/fbioe.2022.1042030
  • Wijesurendra RS, Casadei B. Atrial fibrillation: effects beyond the atrium? Cardiovasc Res. 2015;105(3):238–247. doi: 10.1093/cvr/cvv001
  • Pabel S, Knierim M, Stehle T, et al. Effects of atrial fibrillation on the human ventricle. Circ Res. 2022;130(7):994–1010. doi: 10.1161/CIRCRESAHA.121.319718
  • Ioannidis P, Zografos T, Christoforatou E, et al. The electrophysiology of atrial fibrillation: from basic mechanisms to catheter ablation. Cardiol Res Pract. 2021;2021:4109269. doi: 10.1155/2021/4109269
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574. doi: 10.1007/s00018-013-1349-6
  • Maruyama K, Imanaka-Yoshida K. The pathogenesis of cardiac fibrosis: a review of recent progress. Int J Mol Sci. 2022;23(5):2617. doi: 10.3390/ijms23052617
  • Yoon M, Yang PS, Jang E, et al. Improved population-based clinical outcomes of patients with atrial fibrillation by compliance with the simple ABC (atrial fibrillation better care) Pathway for Integrated care management: a nationwide cohort study. Thromb Haemost. 2019;119(10):1695–1703. doi: 10.1055/s-0039-1693516
  • Berger WR, Meulendijks ER, Limpens J, et al. Persistent atrial fibrillation: a systematic review and meta-analysis of invasive strategies. Int J Cardiol. 2019;278:137–143. doi: 10.1016/j.ijcard.2018.11.127
  • Santangeli P, Zado ES, Hutchinson MD, et al. Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm. 2016;13(2):374–382. doi: 10.1016/j.hrthm.2015.10.023
  • Liu T, Xiong F, Qi XY, et al. Altered calcium handling produces reentry-promoting action potential alternans in atrial fibrillation-remodeled hearts. JCI Insight. 2020;5(8): doi: 10.1172/jci.insight.133754
  • Mahnkopf C, Badger TJ, Burgon NS, et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm. 2010;7(10):1475–1481. doi: 10.1016/j.hrthm.2010.06.030
  • Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol. 2015;5(2):649–665. doi 10.1002/cphy.c140047
  • Aliot E, Botto GL, Crijns HJ, et al. Quality of life in patients with atrial fibrillation: how to assess it and how to improve it. Europace. 2014;16(6):787–796. doi: 10.1093/europace/eut369
  • Crijns H, Van Gelder IC. Paradigm shifts in pathophysiology and management of atrial fibrillation-a tale of the RACE trials in the Netherlands. Neth Heart J. 2020;28(Suppl 1):3–12. doi: 10.1007/s12471-020-01476-0
  • Santhanakrishnan R, Wang N, Larson MG, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 2016;133(5):484–492. doi: 10.1161/CIRCULATIONAHA.115.018614
  • Bergau L, Bengel P, Sciacca V, et al. Atrial fibrillation and heart failure. J Clin Med. 2022;11(9):2510. doi: 10.3390/jcm11092510
  • Vos T, Lim SS, Abbafati C, et al. 2019 diseases and injuries collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–1222. doi: 10.1016/S0140-6736(20)30925-9
  • Adams HP Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke. 1993;24(1):35–41. doi: 10.1161/01.STR.24.1.35
  • White CW, Kerber RE, Weiss HR, et al. The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res. 1982;51(2):205–215. doi: 10.1161/01.RES.51.2.205
  • Markl M, Lee DC, Furiasse N, et al. Left atrial and left atrial appendage 4D blood flow dynamics in atrial fibrillation. Circ Cardiovasc Imaging. 2016;9(9):e004984. doi: 10.1161/CIRCIMAGING.116.004984
  • Gupta KB, Ratcliffe MB, Fallert MA, et al. Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation. 1994;89(5):2315–2326. doi: 10.1161/01.CIR.89.5.2315
  • Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014;63(6):493–505. doi: 10.1016/j.jacc.2013.10.055
  • Yaghi S, Chang A, Ignacio G, et al. Left atrial appendage morphology improves prediction of stagnant flow and stroke risk in atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13(2):e008074. doi: 10.1161/CIRCEP.119.008074
  • Dudzińska-Szczerba K, Kułakowski P, Michałowska I, et al. Association between left atrial appendage morphology and function and the risk of ischaemic stroke in patients with atrial fibrillation. Arrhythm Electrophysiol Rev. 2022;11:e09. doi: 10.15420/aer.2022.08
  • Sajeev JK, Kalman JM, Dewey H, et al. The atrium and embolic stroke: myopathy not atrial fibrillation as the requisite determinant? Jacc-Clin Electrophy. 2020;6(3):251–261. doi: 10.1016/j.jacep.2019.12.013
  • Roka A, Burright I. Remodeling in persistent atrial fibrillation: pathophysiology and therapeutic targets—a systematic review. Physiologia. 2023;3(1):43–72. doi: 10.3390/physiologia3010004
  • Denham NC, Pearman CM, Caldwell JL, et al. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 2018;9:1380. doi: 10.3389/fphys.2018.01380
  • Lugenbiel P, Wenz F, Govorov K, et al. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. PLoS One. 2015;10(3):e0116395. doi: 10.1371/journal.pone.0116395
  • Clarke JD, Caldwell JL, Horn MA, et al. Perturbed atrial calcium handling in an ovine model of heart failure: potential roles for reductions in the L-type calcium current. J Mol Cell Cardiol. 2015;79:169–179. doi: 10.1016/j.yjmcc.2014.11.017
  • Yeh YH, Wakili R, Qi XY, et al. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol. 2008;1(2):93–102. doi: 10.1161/CIRCEP.107.754788
  • Niort BC, Recalde A, Cros C, et al. Critical link between calcium regional heterogeneity and atrial fibrillation susceptibility in sheep left atria. J Clin Med. 2023;12(3):746. doi: 10.3390/jcm12030746
  • Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation. Cardiovasc Res. 2011;89(4):722–733. doi: 10.1093/cvr/cvq389
  • Schotten U, Greiser M, Benke D, et al. Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. Cardiovasc Res. 2002;53(1):192–201. doi: 10.1016/S0008-6363(01)00453-9
  • Salles S, Espeland T, Molares A, et al. 3D myocardial mechanical wave measurements: toward in vivo 3D myocardial elasticity mapping. JACC Cardiovasc Imaging. 2021;14(8):1495–1505. doi: 10.1016/j.jcmg.2020.05.037
  • Claridge B, Drack A, Pinto AR, et al. Defining cardiac fibrosis complexity and regulation towards therapeutic development. Clin Transl Disc. 2023;3(1):e163. doi: 10.1002/ctd2.163
  • López B, Ravassa S, Moreno MU, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 2021;18(7):479–498. doi: 10.1038/s41569-020-00504-1
  • Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. doi: 10.1093/cvr/cvaa324
  • Verheule S, Tuyls E, Gharaviri A, et al. Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction. Circ Arrhythm Electrophysiol. 2013;6(1):202–211. doi: 10.1161/CIRCEP.112.975144
  • Rohr S. Arrhythmogenic implications of fibroblast-myocyte interactions. Circ Arrhythm Electrophysiol. 2012;5(2):442–452. doi: 10.1161/CIRCEP.110.957647
  • Hanif W, Alex L, Su Y, et al. Left atrial remodeling, hypertrophy, and fibrosis in mouse models of heart failure. Cardiovasc Pathol. 2017;30:27–37. doi: 10.1016/j.carpath.2017.06.003
  • Hall C, Gehmlich K, Denning C, et al. Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease. J Am Heart Assoc. 2021;10(5):e019338. doi: 10.1161/JAHA.120.019338
  • Bellini C, Di Martino ES. A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J Biomech Eng. 2012;134(2):021008. doi: 10.1115/1.4006026
  • Richardson WJ, Clarke SA, Quinn TA, et al. Physiological implications of myocardial scar structure. Compr Physiol. 2015;5(4):1877–1909. doi: 10.1002/cphy.c140067
  • Holmes JW, Nuñez JA, Covell JW. Functional implications of myocardial scar structure. Am J Physiol. 1997;272(5 Pt 2):H2123–2130. doi: 10.1152/ajpheart.1997.272.5.H2123
  • Sirry MS, Butler JR, Patnaik SS, et al. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J Mech Behav Biomed Mater. 2016;63:252–264. doi: 10.1016/j.jmbbm.2016.06.029
  • Mendiola EA, Neelakantan S, Xiang Q, et al. Contractile adaptation of the left ventricle post-myocardial infarction: predictions by rodent-specific computational modeling. Ann Biomed Eng. 2023;51(4):846–863. doi: 10.1007/s10439-022-03102-z
  • Fomovsky GM, Holmes JW. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol Heart Circ Physiol. 2010;298(1):H221–228. doi: 10.1152/ajpheart.00495.2009
  • Morita M, Eckert CE, Matsuzaki K, et al. Modification of infarct material properties limits adverse ventricular remodeling. Ann Thorac Surg. 2011;92(2):617–624. doi: 10.1016/j.athoracsur.2011.04.051
  • Johnson RD, Camelliti P. Role of non-myocyte gap junctions and connexin hemichannels in cardiovascular health and disease: novel therapeutic targets? Int J Mol Sci. 2018;19(3):866. doi: 10.3390/ijms19030866
  • Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: mechanisms, clinical evaluation and management. J Cell Mol Med. 2021;25(6):2764–2775. doi: 10.1111/jcmm.16350
  • Li CY, Zhang JR, Hu WN, et al. Atrial fibrosis underlying atrial fibrillation (review). Int J Mol Med. 2021;47(3):1–1. doi: 10.3892/ijmm.2020.4842
  • De Jong AM, Maass AH, Oberdorf-Maass SU, et al. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res. 2011;89(4):754–765. doi: 10.1093/cvr/cvq357
  • Harada M, Nattel S. Implications of inflammation and fibrosis in atrial fibrillation pathophysiology. Card Electrophysiol Clin. 2021;13(1):25–35. doi: 10.1016/j.ccep.2020.11.002
  • Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med. 2021;10(19):4430. doi: 10.3390/jcm10194430
  • Herum KM, Choppe J, Kumar A, et al. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell. 2017;28(14):1871–1882. doi: 10.1091/mbc.e17-01-0014
  • Egorov YV, Rosenshtraukh LV, Glukhov AV. Arrhythmogenic interaction between sympathetic tone and mechanical stretch in rat pulmonary vein myocardium. Front Physiol. 2020;11:237. doi: 10.3389/fphys.2020.00237
  • Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 2003;108(6):668–671. doi: 10.1161/01.CIR.0000086979.39843.7B
  • von Känel R, Kudielka BM, Haeberli A, et al. Prothrombotic changes with acute psychological stress: combined effect of hemoconcentration and genuine coagulation activation. Thromb Res. 2009;123(4):622–630. doi: 10.1016/j.thromres.2008.05.014
  • Vita JA, Holbrook M, Palmisano J, et al. Flow-induced arterial remodeling relates to endothelial function in the human forearm. Circulation. 2008;117(24):3126–3133. doi: 10.1161/CIRCULATIONAHA.108.778472
  • Ward MR, Pasterkamp G, Yeung AC, et al. Arterial remodeling. Mechanisms and clinical implications. Circulation. 2000;102(10):1186–1191. doi: 10.1161/01.CIR.102.10.1186
  • Zuo K, Li K, Liu M, et al. Correlation of left atrial wall thickness and atrial remodeling in atrial fibrillation: study based on low-dose-ibutilide-facilitated catheter ablation. Medicine (Baltimore). 2019;98(15):e15170. doi: 10.1097/MD.0000000000015170
  • Vaquero M, Calvo D, Jalife J. Cardiac fibrillation: from ion channels to rotors in the human heart. Heart Rhythm. 2008;5(6):872–879. doi: 10.1016/j.hrthm.2008.02.034
  • Beinart R, Khurram IM, Liu S, et al. Cardiac magnetic resonance T1 mapping of left atrial myocardium. Heart Rhythm. 2013;10(9):1325–1331. doi: 10.1016/j.hrthm.2013.05.003
  • Ling LH, McLellan AJ, Taylor AJ, et al. Magnetic resonance post-contrast T1 mapping in the human atrium: validation and impact on clinical outcome after catheter ablation for atrial fibrillation. Heart Rhythm. 2014;11(9):1551–1559. doi: 10.1016/j.hrthm.2014.06.012
  • Hopman L, Mulder MJ, van der Laan AM, et al. Impaired left atrial reservoir and conduit strain in patients with atrial fibrillation and extensive left atrial fibrosis. J Cardiovasc Magn Reson. 2021;23(1):131. doi: 10.1186/s12968-021-00820-6
  • Lisi M, Mandoli GE, Cameli M, et al. Left atrial strain by speckle tracking predicts atrial fibrosis in patients undergoing heart transplantation. Eur Heart J Cardiovasc Imaging. 2022;23(6):829–835. doi: 10.1093/ehjci/jeab106
  • Çöteli C, Hazırolan T, Aytemir K, et al. Evaluation of atrial fibrosis in atrial fibrillation patients with three different methods. Turk J Med Sci. 2022;52(1):175–187. doi: 10.3906/sag-2103-194
  • Sun BJ, Park JH, Lee M, et al. Normal reference values for left atrial strain and its determinants from a large Korean multicenter registry. J Cardiovasc Imaging. 2020;28(3):186–198. doi: 10.4250/jcvi.2020.0043
  • Nielsen AB, Skaarup KG, Djernæs K, et al. Left atrial contractile strain predicts recurrence of atrial tachyarrhythmia after catheter ablation. Int J Cardiol. 2022;358:51–57. doi: 10.1016/j.ijcard.2022.04.056
  • Siebermair J, Kholmovski EG, Marrouche N. Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. Jacc-Clin Electrophy. 2017;3(8):791–802. doi: 10.1016/j.jacep.2017.07.004
  • Harrison JL, Jensen HK, Peel SA, et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur Heart J. 2014;35(22):1486–1495. doi: 10.1093/eurheartj/eht560
  • McGann C, Akoum N, Patel A, et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 2014;7(1):23–30. doi: 10.1161/CIRCEP.113.000689
  • Hassan S, Barrett CJ, Crossman DJ. Imaging tools for assessment of myocardial fibrosis in humans: the need for greater detail. Biophys Rev. 2020;12(4):969–987. doi: 10.1007/s12551-020-00738-w
  • Menacho K, Ramirez S, Segura P, et al. INCA (Peru) study: impact of non-invasive cardiac magnetic resonance assessment in the developing world. J Am Heart Assoc. 2018;7(17):e008981. doi: 10.1161/JAHA.118.008981
  • Hopman L, Bhagirath P, Mulder MJ, et al. Quantification of left atrial fibrosis by 3D late gadolinium-enhanced cardiac magnetic resonance imaging in patients with atrial fibrillation: impact of different analysis methods. Eur Heart J Cardiovasc Imaging. 2022;23(9):1182–1190. doi: 10.1093/ehjci/jeab245
  • Boyle PM, Sarairah S, Kwan KT, et al. Elevated fibrosis burden as assessed by MRI predicts cryoballoon ablation failure. J Cardiovasc Electrophysiol. 2023;34(2):302–312. doi: 10.1111/jce.15791
  • Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498–506. doi: 10.1001/jama.2014.3
  • Marrouche NF, Wazni O, McGann C, et al. Effect of MRI-Guided fibrosis ablation vs conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: the DECAAF II randomized clinical trial. JAMA. 2022;327(23):2296–2305. doi: 10.1001/jama.2022.8831
  • Bisbal F, Benito E, Teis A, et al. Magnetic resonance imaging-guided fibrosis ablation for the treatment of atrial fibrillation: the ALICIA trial. Circ Arrhythm Electrophysiol. 2020;13(11):e008707. doi: 10.1161/CIRCEP.120.008707
  • Benito EM, Carlosena-Remirez A, Guasch E, et al. Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. EP Europace. 2017;19(8):1272–1279. doi: 10.1093/europace/euw219
  • Wu Y, Tang Z, Li B, et al. Recent advances in fibrosis and scar segmentation from cardiac MRI: a state-of-the-art review and future perspectives. Front Physiol. 2021;12:709230. doi: 10.3389/fphys.2021.709230
  • Krul SP, Berger WR, Smit NW, et al. Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8(2):288–295. doi: 10.1161/CIRCEP.114.001752
  • Takahashi Y, Yamaguchi T, Otsubo T, et al. Histological validation of atrial structural remodelling in patients with atrial fibrillation. Eur Heart J. 2023;44(35):3339–3353. doi: 10.1093/eurheartj/ehad396
  • Dekkers IA, Lamb HJ. Clinical application and technical considerations of T(1) & T(2)(*) mapping in cardiac, liver, and renal imaging. Br J Radiol. 2018;91(1092):20170825. doi: 10.1259/bjr.20170825
  • Elsafty HG, El Shafey M, El Arabawy R, et al. Could native T1 mapping replace late gadolinium enhancement in the assessment of myocardial fibrosis in patients with cardiomyopathy? Egypt J Radiol Nucl Med. 2021;52(1):222. doi: 10.1186/s43055-021-00520-2
  • Bouazizi K, Rahhal A, Kusmia S, et al. Differentiation and quantification of fibrosis, fat and fatty fibrosis in human left atrial myocardium using ex vivo MRI. PLoS One. 2018;13(10):e0205104. doi: 10.1371/journal.pone.0205104
  • Granitz M, Motloch LJ, Granitz C, et al. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers: reference values and clinical implications. Wien Klin Wochenschr. 2019;131(7–8):143–155. doi: 10.1007/s00508-018-1411-3
  • Child N, Suna G, Dabir D, et al. Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. Eur Heart J Cardiovasc Imaging. 2018;19(7):768–776. doi: 10.1093/ehjci/jex309
  • Heidenreich JF, Weng AM, Donhauser J, et al. T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA. BMC Med Imaging. 2019;19(1):59. doi: 10.1186/s12880-019-0362-0
  • Rauhalammi SM, Mangion K, Barrientos PH, et al. Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging. 2016;44(3):541–548. doi: 10.1002/jmri.25217
  • van den Boomen M, Slart R, Hulleman EV, et al. Native T(1) reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: a systematic review and meta-analysis. J Magn Reson Imaging. 2018;47(4):891–912. doi: 10.1002/jmri.25885
  • Gottbrecht M, Kramer CM, Salerno M. Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: a meta-analysis. Radiology. 2019;290(2):317–326. doi: 10.1148/radiol.2018180226
  • Cau R, Bassareo P, Suri JS, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review. Eur Radiol. 2022;32(7):4384–4394. doi: 10.1007/s00330-022-08598-6
  • Kuppahally SS, Akoum N, Burgon NS, et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ Cardiovasc Imaging. 2010;3(3):231–239. doi: 10.1161/CIRCIMAGING.109.865683
  • Kim J, Park SJ, Jeong DS, et al. Left atrial strain predicts fibrosis of left atrial appendage in patients with atrial fibrillation undergoing totally thoracoscopic ablation. Front Cardiovasc Med. 2023;10:1130372. doi: 10.3389/fcvm.2023.1130372
  • Smiseth OA, Torp H, Opdahl A, et al. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37(15):1196–1207. doi: 10.1093/eurheartj/ehv529
  • Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Fail Rev. 2017;22(4):465–476. doi: 10.1007/s10741-017-9621-8
  • Gan GCH, Ferkh A, Boyd A, et al. Left atrial function: evaluation by strain analysis. Cardiovasc Diagn Ther. 2018;8(1):29–46. doi: 10.21037/cdt.2017.06.08
  • Qu YY, Buckert D, Ma GS, et al. Quantitative assessment of left and right atrial strains using cardiovascular magnetic resonance based tissue tracking. Front Cardiovasc Med. 2021;8:690240. doi: 10.3389/fcvm.2021.690240
  • Caixal G, Alarcón F, Althoff TF, et al. Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity. EP Europace. 2021;23(3):380–388. doi: 10.1093/europace/euaa313
  • Doyley MM, Parker KJ. Elastography: general principles and clinical applications. Ultrasound Clin. 2014;9(1):1–11. doi: 10.1016/j.cult.2013.09.006
  • Correia ETO, Barbetta L, Silva O, et al. Left atrial stiffness: a predictor of atrial fibrillation recurrence after radiofrequency catheter ablation - a systematic review and meta-analysis. Arq Bras Cardiol. 2019;112(5):501–508. doi: 10.5935/abc.20190040
  • Villalobos Lizardi JC, Baranger J, Nguyen MB, et al. A guide for assessment of myocardial stiffness in health and disease. Nat Cardiovasc Res. 2022;1(1):8–22. doi: 10.1038/s44161-021-00007-3
  • Khan S, Fakhouri F, Majeed W, et al. Cardiovascular magnetic resonance elastography: a review. NMR Biomed. 2018;31(10):e3853. doi: 10.1002/nbm.3853
  • Caenen A, Pernot M, Nightingale KR, et al. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol. 2022;67(2):02TR01. doi: 10.1088/1361-6560/ac404d
  • Arani A, Arunachalam SP, Chang ICY, et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging. 2017;46(5):1361–1367. doi: 10.1002/jmri.25678
  • Villemain O, Correia M, Mousseaux E, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging. 2019;12(7 Pt 1):1135–1145. doi: 10.1016/j.jcmg.2018.02.002
  • Alan B, Alan S. Evaluation of carotid artery stiffness in patients with coronary artery disease using acoustic radiation force impulse elastography. Vascular. 2023;31(3):564–572. doi: 10.1177/17085381221076679
  • Cvijic M, Bézy S, Petrescu A, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography. Eur Heart J Cardiovasc Imaging. 2020;21(6):664–672. doi: 10.1093/ehjci/jez205
  • Eyerly SA, Vejdani-Jahromi M, Dumont DM, et al. The evolution of tissue stiffness at radiofrequency ablation sites during lesion formation and in the peri-ablation period. J Cardiovasc Electrophysiol. 2015;26(9):1009–1018. doi: 10.1111/jce.12709
  • Kwiecinski W, Provost J, Dubois R, et al. Quantitative evaluation of atrial radio frequency ablation using intracardiac shear-wave elastography. Med Phys. 2014;41(11):112901. doi: 10.1118/1.4896820
  • Iskander-Rizk S, Kruizinga P, van der Steen AFW, et al. Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium. Biomed Opt Express. 2018;9(3):1309–1322. doi: 10.1364/BOE.9.001309
  • Iskander-Rizk S, Kruizinga P, Beurskens R, et al. Real-time photoacoustic assessment of radiofrequency ablation lesion formation in the left atrium. Photoacoustics. 2019;16:100150. doi: 10.1016/j.pacs.2019.100150
  • Kim Y-J, Wolf PD, Bahnson TD. Shear wave elastography with intracardiac echocardiography characterizes atrial stiffness during catheter ablation for atrial fibrillation. Circulation. 2019;140:A17083.
  • Sayseng V, Grondin J, Salgaonkar VA, et al. Catheter ablation lesion visualization with intracardiac strain imaging in canines and humans. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(9):1800–1810. doi: 10.1109/TUFFC.2020.2987480
  • Couade M, Pernot M, Messas E, et al. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE Trans Med Imaging. 2011;30(2):295–305. doi: 10.1109/TMI.2010.2076829
  • Mazumder R, Clymer BD, White RD, et al. In-vivo waveguide cardiac magnetic resonance elastography. J Cardiovasc Magn Reson. 2015;17(S1): doi: 10.1186/1532-429X-17-S1-P35
  • Miller R, Kolipaka A, Nash MP, et al. Relative identifiability of anisotropic properties from magnetic resonance elastography. NMR Biomed. 2018;31(10):e3848. doi: 10.1002/nbm.3848
  • Pashakhanloo F, Herzka DA, Ashikaga H, et al. Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circ Arrhythm Electrophysiol. 2016;9(4):e004133. doi: 10.1161/CIRCEP.116.004133
  • The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. Ann Intern Med. 1998;128(8):639–647. doi: 10.7326/0003-4819-128-8-199804150-00005
  • Goldman ME, Pearce LA, Hart RG, et al. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (the stroke prevention in atrial fibrillation [SPAF-III] study). J Am Soc Echocardiogr. 1999;12(12):1080–1087. doi: 10.1016/S0894-7317(99)70105-7
  • Lee DC, Markl M, Ng J, et al. Three-dimensional left atrial blood flow characteristics in patients with atrial fibrillation assessed by 4D flow CMR. Eur Heart J Cardiovasc Imaging. 2016;17(11):1259–1268. doi: 10.1093/ehjci/jev304
  • Costello BT, Voskoboinik A, Qadri AM, et al. Measuring atrial stasis during sinus rhythm in patients with paroxysmal atrial fibrillation using 4 dimensional flow imaging: 4D flow imaging of atrial stasis. Int J Cardiol. 2020;315:45–50. doi: 10.1016/j.ijcard.2020.05.012
  • Ng J, Markl M, Lee DC, et al. Structural remodeling determinants of reduced left atrial blood flow measured by 4D flow MRI in patients with atrial fibrillation. Circulation. 2014;130(suppl_2):A15673.
  • van Ooij P, Allen BD, Contaldi C, et al. 4D flow MRI and T1-mapping: assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J Magn Reson Imaging. 2016;43(1):107–114. doi: 10.1002/jmri.24962
  • Blanken CPS, Farag ES, Boekholdt SM, et al. Advanced cardiac MRI techniques for evaluation of left-sided valvular heart disease. J Magn Reson Imaging. 2018;48(2):318–329. doi: 10.1002/jmri.26204
  • Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17(1):72. doi: 10.1186/s12968-015-0174-5
  • Bissell MM, Raimondi F, Ait Ali L, et al. 4D flow cardiovascular magnetic resonance consensus statement: 2023 update. J Cardiovasc Magn Reson. 2023;25(1):40. doi: 10.1186/s12968-023-00942-z
  • Heijman J, Sutanto H, Crijns H, et al. Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care. Cardiovasc Res. 2021;117(7):1682–1699. doi: 10.1093/cvr/cvab138
  • Niederer SA, Lumens J, Trayanova NA. Computational models in cardiology. Nat Rev Cardiol. 2019;16(2):100–111. doi: 10.1038/s41569-018-0104-y
  • Fletcher AG, Osborne JM. Seven challenges in the multiscale modeling of multicellular tissues. WIREs Mech Dis. 2022;14(1):e1527. doi: 10.1002/wsbm.1527
  • Beheshti M, Umapathy K, Krishnan S. Electrophysiological cardiac modeling: a review. Crit Rev Biomed Eng. 2016;44(1–2):99–122. doi: 10.1615/CritRevBiomedEng.2016016454
  • Clayton RH, Aboelkassem Y, Cantwell CD, et al. An audit of uncertainty in multi-scale cardiac electrophysiology models. Philos Trans A Math Phys Eng Sci. 2020;378(2173):20190335. doi: 10.1098/rsta.2019.0335
  • Trayanova NA, Rice JJ. Cardiac electromechanical models: from cell to organ. Front Physiol. 2011;2:43. doi: 10.3389/fphys.2011.00043
  • Quarteroni A, Lassila T, Rossi S, et al. Integrated heart—coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput Method Appl M. 2017;314:345–407. doi: 10.1016/j.cma.2016.05.031
  • Avazmohammadi R, Soares JS, Li DS, et al. A contemporary look at biomechanical models of myocardium. Annu Rev Biomed Eng. 2019;21(1):417–442. doi: 10.1146/annurev-bioeng-062117-121129
  • Hirschhorn M, Tchantchaleishvili V, Stevens R, et al. Fluid-structure interaction modeling in cardiovascular medicine - a systematic review 2017-2019. Med Eng Phys. 2020;78:1–13. doi: 10.1016/j.medengphy.2020.01.008
  • Morris PD, Narracott A, von Tengg-Kobligk H, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 2016;102(1):18–28. doi: 10.1136/heartjnl-2015-308044
  • Lim CW, Su Y, Yeo SY, et al. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines. PLoS One. 2014;9(4):e93747. doi: 10.1371/journal.pone.0093747
  • Razeghi O, Solís-Lemus JA, Lee AWC, et al. CemrgApp: an interactive medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research. SoftwareX. 2020;12:100570. doi: 10.1016/j.softx.2020.100570
  • Vadakkumpadan F, Rantner LJ, Tice B, et al. Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J Electrocardiol. 2009;42(2):157 e151–110. doi: 10.1016/j.jelectrocard.2008.12.003
  • Ackerman MJ. The visible human project. Proc IEEE. 1998;86(3):504–511. doi: 10.1109/5.662875
  • Sachse FB. Modeling the anatomy of the human heart using the cryosection images of the visible female dataset. The third visible human project conference proceedings; 2000 October 5–6; Bethesda, Maryland, United States. https://wayback.archive-it.org/5215/20150204210656/http://www.nlm.nih.gov/archive/20120702/research/visible/vhpconf2000/MAIN.HTM
  • Vigmond EJ, Clements C, McQueen DM, et al. Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog Biophys Mol Biol. 2008;97(2–3):520–542. doi: 10.1016/j.pbiomolbio.2008.02.022
  • Zahid S, Cochet H, Boyle PM, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res. 2016;110(3):443–454. doi: 10.1093/cvr/cvw073
  • Zhao J, Hansen BJ, Wang Y, et al. Three-dimensional integrated Functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J Am Heart Assoc. 2017;6(8): doi: 10.1161/JAHA.117.005922
  • Strocchi M, Augustin CM, Gsell MAF, et al. A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations. PLoS One. 2020;15(6):e0235145. doi: 10.1371/journal.pone.0235145
  • Fastl TE, Tobon-Gomez C, Crozier A, et al. Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med Image Anal. 2018;47:180–190. doi: 10.1016/j.media.2018.04.001
  • Hoermann JM, Pfaller MR, Avena L, et al. Automatic mapping of atrial fiber orientations for patient-specific modeling of cardiac electromechanics using image registration. Int J Numer Method Biomed Eng. 2019;35(6):e3190. doi: 10.1002/cnm.3190
  • Roney CH, Bendikas R, Pashakhanloo F, et al. Constructing a human atrial fibre atlas. Ann Biomed Eng. 2021;49(1):233–250. doi: 10.1007/s10439-020-02525-w
  • Azzolin L, Eichenlaub M, Nagel C, et al. AugmentA: patient-specific augmented atrial model generation tool. Comput Med Imaging Graph. 2023;108:102265. doi: 10.1016/j.compmedimag.2023.102265
  • Hunter RJ, Liu Y, Lu Y, et al. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2012;5(2):351–360. doi: 10.1161/CIRCEP.111.965541
  • Fritz T, Wieners C, Seemann G, et al. Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol. 2014;13(3):627–641. doi: 10.1007/s10237-013-0523-y
  • Augustin CM, Neic A, Liebmann M, et al. Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys. 2016;305:622–646. doi: 10.1016/j.jcp.2015.10.045
  • Hörmann JM, Bertoglio C, Nagler A, et al. Multiphysics modeling of the atrial systole under standard ablation strategies. Cardiovasc Eng Technol. 2017;8(2):205–218. doi: 10.1007/s13239-017-0308-z
  • Feng L, Gao H, Griffith B, et al. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. Int J Numer Method Biomed Eng. 2019;35(11):e3254. doi: 10.1002/cnm.3254
  • Santiago A, Aguado-Sierra J, Zavala-Aké M, et al. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Method Biomed Eng. 2018;34(12):e3140. doi: 10.1002/cnm.3140
  • Augustin CM, Fastl TE, Neic A, et al. The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium. Biomech Model Mechanobiol. 2020;19(3):1015–1034. doi: 10.1007/s10237-019-01268-5
  • Gerach T, Schuler S, Fröhlich J, et al. Electro-mechanical whole-heart digital twins: a fully coupled multi-physics approach. Mathematics-Basel. 2021;9(11):1247. doi: 10.3390/math9111247
  • Moss R, Wülfers EM, Schuler S, et al. A fully-coupled electro-mechanical whole-heart computational model: influence of cardiac contraction on the ECG. Front Physiol. 2021;12:778872. doi: 10.3389/fphys.2021.778872
  • Gerach T, Schuler S, Wachter A, et al. The impact of standard ablation strategies for atrial fibrillation on cardiovascular performance in a four-chamber heart model. Cardiovasc Eng Technol. 2023;14(2):296–314. doi: 10.1007/s13239-022-00651-1
  • Moyer CB, Norton PT, Ferguson JD, et al. Changes in global and regional mechanics due to atrial fibrillation: insights from a coupled finite-element and circulation model. Ann Biomed Eng. 2015;43(7):1600–1613. doi: 10.1007/s10439-015-1256-0
  • Paliwal N, Ali RL, Salvador M, et al. Presence of left atrial fibrosis may contribute to aberrant hemodynamics and increased risk of stroke in atrial fibrillation patients. Front Physiol. 2021;12:657452. doi: 10.3389/fphys.2021.657452
  • Macheret F, Bifulco SF, Scott GD, et al. Comparing inducibility of reentrant arrhythmia in patient-specific computational models to clinical atrial fibrillation phenotypes. Jacc-Clin Electrophy. 2023;9(10):2149–2162. doi: 10.1016/j.jacep.2023.06.015
  • O’Hara RP, Binka E, Prakosa A, et al. Personalized computational heart models with T1-mapped fibrotic remodeling predict sudden death risk in patients with hypertrophic cardiomyopathy. Elife. 2022;11: doi: 10.7554/eLife.73325
  • Niederer SA, Campbell KS, Campbell SG. A short history of the development of mathematical models of cardiac mechanics. J Mol Cell Cardiol. 2019;127:11–19. doi: 10.1016/j.yjmcc.2018.11.015
  • Rice JJ, Wang F, Bers DM, et al. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J. 2008;95(5):2368–2390. doi: 10.1529/biophysj.107.119487
  • Land S, Niederer SA, Beard DA. A spatially detailed model of isometric contraction based on competitive binding of troponin I explains cooperative interactions between tropomyosin and crossbridges. PLoS Comput Biol. 2015;11(8):e1004376. doi: 10.1371/journal.pcbi.1004376
  • Walklate J, Ferrantini C, Johnson CA, et al. Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci. 2021;78(23):7309–7337. doi: 10.1007/s00018-021-03971-y
  • Prodanovic M, Geeves MA, Poggesi C, et al. Effect of myosin isoforms on cardiac muscle twitch of mice, rats and humans. Int J Mol Sci. 2022;23(3):1135. doi: 10.3390/ijms23031135
  • Fritz T, Dössel O, Krueger M. Electromechanical modeling of the human atria. Biomed Technol (Berl). 2013;58(SI–1–Track–N):000010151520134321. doi: 10.1515/bmt-2013-4321
  • Brocklehurst P, Ni H, Zhang H, et al. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue. PLoS One. 2017;12(5):e0176607. doi: 10.1371/journal.pone.0176607
  • Mazhar F, Regazzoni F, Bartolucci C, et al. A Novel Human Atrial Electromechanical Cardiomyocyte Model with Mechano-Calcium Feedback Effect. 2022 Computing in Cardiology (CinC). Tampere, Finland: IEEE; 2022. p. 1–4. doi: 10.22489/CinC.2022.195
  • Zile MA, Trayanova NA. Increased thin filament activation enhances alternans in human chronic atrial fibrillation. Am J Physiol Heart Circ Physiol. 2018;315(5):H1453–H1462. doi: 10.1152/ajpheart.00658.2017
  • Mazhar F, Bartolucci C, Regazzoni F, et al. A detailed mathematical model of the human atrial cardiomyocyte: integration of electrophysiology and cardiomechanics. J Physiol. 2023. doi: 10.1113/JP283974
  • Narolska NA, Eiras S, van Loon RB, et al. Myosin heavy chain composition and the economy of contraction in healthy and diseased human myocardium. J Muscle Res Cell Motil. 2005;26(1):39–48. doi: 10.1007/s10974-005-9005-x
  • Adeniran I, MacIver DH, Garratt CJ, et al. Effects of persistent atrial fibrillation-induced electrical remodeling on atrial electro-mechanics – insights from a 3D model of the human atria. PLoS One. 2015;10(11):e0142397. doi: 10.1371/journal.pone.0142397
  • Heikhmakhtiar AK, Tekle AA, Lim KM. Influence of fibrosis amount and patterns on ventricular arrhythmogenesis and pumping efficacy: computational study. Front Physiol. 2021;12:644473. doi: 10.3389/fphys.2021.644473
  • Phung TN, Moyer CB, Norton PT, et al. Effect of ablation pattern on mechanical function in the atrium. Pacing Clin Electrophysiol. 2017;40(6):648–654. doi: 10.1111/pace.13086
  • Palit A, Bhudia SK, Arvanitis TN, et al. In vivo estimation of passive biomechanical properties of human myocardium. Med Biol Eng Comput. 2018;56(9):1615–1631. doi: 10.1007/s11517-017-1768-x
  • Jernigan SR, Buckner GD, Eischen JW, et al. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor. J Biomech Eng. 2007;129(6):825–837. doi: 10.1115/1.2801650
  • Bellini C, Di Martino ES, Federico S. Mechanical behaviour of the human atria. Ann Biomed Eng. 2013;41(7):1478–1490. doi: 10.1007/s10439-012-0699-9
  • Javani S, Gordon M, Azadani AN. Biomechanical properties and microstructure of heart chambers: a paired comparison study in an ovine model. Ann Biomed Eng. 2016;44(11):3266–3283. doi: 10.1007/s10439-016-1658-7
  • Caggiano LR, Holmes JW. A comparison of fiber based material laws for myocardial scar. J Elast. 2021;145(1–2):321–337. doi: 10.1007/s10659-021-09845-5
  • Martonová D, Alkassar M, Seufert J, et al. Passive mechanical properties in healthy and infarcted rat left ventricle characterised via a mixture model. J Mech Behav Biomed Mater. 2021;119:104430. doi: 10.1016/j.jmbbm.2021.104430
  • Provost J, Nguyen VT, Legrand D, et al. Electromechanical wave imaging for arrhythmias. Phys Med Biol. 2011;56(22):L1–11. doi: 10.1088/0031-9155/56/22/F01
  • Grubb CS, Melki L, Wang DY, et al. Noninvasive localization of cardiac arrhythmias using electromechanical wave imaging. Sci Transl Med. 2020;12(536): doi: 10.1126/scitranslmed.aax6111
  • Vagos M, van Herck IGM, Sundnes J, et al. Computational modeling of electrophysiology and pharmacotherapy of atrial fibrillation: recent advances and future challenges. Front Physiol. 2018;9:1221. doi: 10.3389/fphys.2018.01221
  • Di Martino ES, Bellini C, Schwartzman DS. In vivo porcine left atrial wall stress: computational model. J Biomech. 2011;44(15):2589–2594. doi: 10.1016/j.jbiomech.2011.08.023
  • Ni H, Adeniran I, Zhang H. In-silico investigations of the functional impact of KCNA5 mutations on atrial mechanical dynamics. J Mol Cell Cardiol. 2017;111:86–95. doi: 10.1016/j.yjmcc.2017.08.005
  • Satriano A, Vigmond EJ, Schwartzman DS, et al. Mechano-electric finite element model of the left atrium. Comput Biol Med. 2018;96:24–31. doi: 10.1016/j.compbiomed.2018.02.010
  • Fedele M, Piersanti R, Regazzoni F, et al. A comprehensive and biophysically detailed computational model of the whole human heart electromechanics. Comput Method Appl M. 2023;410:115983. doi: 10.1016/j.cma.2023.115983
  • Viola F, Del Corso G, De Paulis R, et al. GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Sci Rep. 2023;13(1):8230. doi: 10.1038/s41598-023-34098-8
  • Strocchi M, Longobardi S, Augustin CM, et al. Cell to whole organ global sensitivity analysis on a four-chamber heart electromechanics model using Gaussian processes emulators. PLoS Comput Biol. 2023;19(6):e1011257. doi: 10.1371/journal.pcbi.1011257
  • Viola F, Meschini V, Verzicco R. Fluid–structure-electrophysiology interaction (FSEI) in the left-heart: a multi-way coupled computational model. Eur J Mech B-Fluid. 2020;79:212–232. doi: 10.1016/j.euromechflu.2019.09.006
  • Bucelli M, Zingaro A, Africa PC, et al. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: application to the human left heart. Int J Numer Method Biomed Eng. 2023;39(3):e3678. doi: 10.1002/cnm.3678
  • Boyle PM, Zghaib T, Zahid S, et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng. 2019;3(11):870–879. doi: 10.1038/s41551-019-0437-9
  • Azzolin L, Eichenlaub M, Nagel C, et al. Personalized ablation vs. conventional ablation strategies to terminate atrial fibrillation and prevent recurrence. EP Europace. 2023;25(1):211–222. doi: 10.1093/europace/euac116
  • Ding WY, Gupta D, Lip GYH. Atrial fibrillation and the prothrombotic state: revisiting Virchow’s triad in 2020. Heart. 2020;106(19):1463–1468. doi: 10.1136/heartjnl-2020-316977
  • Boyle PM, Del Alamo JC, Akoum N. Fibrosis, atrial fibrillation and stroke: clinical updates and emerging mechanistic models. Heart. 2021;107(2):99–105. doi: 10.1136/heartjnl-2020-317455
  • Leiderman K, Fogelson A. An overview of mathematical modeling of thrombus formation under flow. Thromb Res. 2014;133(Suppl 1):S12–14. doi: 10.1016/j.thromres.2014.03.005
  • Fogelson AL, Neeves KB. Fluid mechanics of blood clot formation. Annu Rev Fluid Mech. 2015;47(1):377–403. doi: 10.1146/annurev-fluid-010814-014513
  • Qureshi A, Darwish O, Chubb H, et al. Modelling left atrial flow and blood coagulation for risk of thrombus formation in atrial fibrillation. 2020 Computing in Cardiology. Rimini, Italy: IEEE; 2020. p. 1–4.doi: 10.22489/CinC.2020.219
  • Chen A, Stecker E, Warden BA. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9(13):e017559. doi: 10.1161/JAHA.120.017559
  • Koizumi R, Funamoto K, Hayase T, et al. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. J Biomech. 2015;48(3):472–478. doi: 10.1016/j.jbiomech.2014.12.025
  • Otani T, Al-Issa A, Pourmorteza A, et al. A computational framework for personalized blood flow analysis in the human left atrium. Ann Biomed Eng. 2016;44(11):3284–3294. doi: 10.1007/s10439-016-1590-x
  • Masci A, Alessandrini M, Forti D, et al. A proof of concept for computational fluid dynamic analysis of the left atrium in atrial fibrillation on a patient-specific basis. J Biomech Eng. 2020;142(1): doi: 10.1115/1.4044583
  • Dueñas-Pamplona J, García JG, Sierra-Pallares J, et al. A comprehensive comparison of various patient-specific CFD models of the left atrium for atrial fibrillation patients. Comput Biol Med. 2021;133:104423. doi: 10.1016/j.compbiomed.2021.104423
  • García-Villalba M, Rossini L, Gonzalo A, et al. Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk. Front Physiol. 2021;12:596596. doi: 10.3389/fphys.2021.596596
  • Gonzalo A, García-Villalba M, Rossini L, et al. Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations. Int J Numer Method Biomed Eng. 2022;38(6):e3597. doi: 10.1002/cnm.3597
  • Mill J, Harrison J, Legghe B, et al. In-silico analysis of the influence of pulmonary vein configuration on left atrial haemodynamics and thrombus formation in a large cohort. In: Ennis DB, Perotti LE, Wang VY, editors. Functional imaging and modeling of the heart. Stanford, CA, USA: Springer International Publishing; 2021;605–616. doi: 10.1007/978-3-030-78710-3_58
  • Corti M, Zingaro A, Dede L, et al. Impact of atrial fibrillation on left atrium haemodynamics: a computational fluid dynamics study. Comput Biol Med. 2022;150:106143. doi: 10.1016/j.compbiomed.2022.106143
  • Lantz J, Henriksson L, Persson A, et al. Patient-specific simulation of cardiac blood flow from high-resolution computed tomography. J Biomech Eng. 2016;138(12): doi: 10.1115/1.4034652
  • Khalili E, Daversin-Catty C, Olivares AL, et al. On the importance of fundamental computational fluid dynamics towards a robust and reliable model of left atrial flows: is there more than meets the eye? arXiv. 2023. doi: 10.48550/arXiv.2302.01716
  • Alinezhad L, Ghalichi F, Ahmadlouydarab M, et al. Left atrial appendage shape impacts on the left atrial flow hemodynamics: a numerical hypothesis generating study on two cases. Comput Methods Programs Biomed. 2022;213:106506. doi: 10.1016/j.cmpb.2021.106506
  • Bosi GM, Cook A, Rai R, et al. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front Cardiovasc Med. 2018;5:34. doi: 10.3389/fcvm.2018.00034
  • Dillon-Murphy D, Marlevi D, Ruijsink B, et al. Modeling left atrial flow, energy, blood heating distribution in response to catheter ablation therapy. Front Physiol. 2018;9:1757. doi: 10.3389/fphys.2018.01757
  • Dueñas-Pamplona J, García JG, Castro F, et al. Morphing the left atrium geometry: a deeper insight into blood stasis within the left atrial appendage. Appl Math Modell. 2022;108:27–45. doi: 10.1016/j.apm.2022.03.012
  • Fang R, Li Y, Zhang Y, et al. Impact of left atrial appendage location on risk of thrombus formation in patients with atrial fibrillation. Biomech Model Mechanobiol. 2021;20(4):1431–1443. doi: 10.1007/s10237-021-01454-4
  • Fanni BM, Capellini K, Di Leonardo M, et al. Correlation between LAA morphological features and computational fluid dynamics analysis for non-valvular atrial fibrillation patients. Appl Sci. 2020;10(4):1448. doi: 10.3390/app10041448
  • Flores O, Rossini L, Gonzalo A, et al. Evaluation of blood stasis in the left atrium using patient-specific direct numerical simulations. In: García-Villalba M, Kuerten H, and Salvetti M: Direct and Large Eddy Simulation XII, editors. Cham, Switzerland: Springer International Publishing; 2020. p. 485–490. doi:10.1007/978-3-030-42822-8_64
  • García-Isla G, Olivares AL, Silva E, et al. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int J Numer Method Biomed Eng. 2018;34(8):e3100. doi: 10.1002/cnm.3100
  • Lantz J, Gupta V, Henriksson L, et al. Impact of pulmonary venous inflow on cardiac flow simulations: comparison with in vivo 4D flow MRI. Ann Biomed Eng. 2019;47(2):413–424. doi: 10.1007/s10439-018-02153-5
  • Masci A, Barone L, Dede L, et al. The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: a computational fluid dynamics study. Front Physiol. 2018;9:1938. doi: 10.3389/fphys.2018.01938
  • Sanatkhani S, Nedios S, Menon PG, et al. Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol. 2021;12:633135. doi: 10.3389/fphys.2021.633135
  • Vella D, Monteleone A, Musotto G, et al. Effect of the alterations in contractility and morphology produced by atrial fibrillation on the thrombosis potential of the left atrial appendage. Front Bioeng Biotechnol. 2021;9:586041. doi: 10.3389/fbioe.2021.586041
  • Wang Y, Qiao YH, Mao YK, et al. Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Math Biosci Eng. 2020;17(3):2348–2360. doi: 10.3934/mbe.2020125
  • Tseng AS, Noseworthy PA. Prediction of atrial fibrillation using machine learning: a review. Front Physiol. 2021;12:752317. doi: 10.3389/fphys.2021.752317
  • Chahine Y, Magoon MJ, Maidu B, et al. Machine learning and the conundrum of stroke risk prediction. Arrhythm Electrophysiol Rev. 2023;12:e07. doi: 10.15420/aer.2022.34
  • Bifulco SF, Macheret F, Scott GD, et al. Explainable machine learning to predict anchored reentry substrate created by persistent atrial fibrillation ablation in computational models. J Am Heart Assoc. 2023;12(16):e030500. doi: 10.1161/JAHA.123.030500
  • Shade JK, Ali RL, Basile D, et al. Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2020;13(7):e008213. doi: 10.1161/CIRCEP.119.008213
  • Roney CH, Sim I, Yu J, et al. Predicting atrial fibrillation recurrence by combining population data and virtual cohorts of patient-specific left atrial models. Circ Arrhythm Electrophysiol. 2022;15(2):e010253. doi: 10.1161/CIRCEP.121.010253
  • Carluccio E, Cameli M, Rossi A, et al. Left atrial strain in the assessment of diastolic function in heart failure: a machine learning approach. Circ Cardiovasc Imaging. 2023;16(2):e014605. doi: 10.1161/CIRCIMAGING.122.014605
  • Xiong Z, Xia Q, Hu Z, et al. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med Image Anal. 2021;67:101832. doi: 10.1016/j.media.2020.101832
  • Eckstein J, Moghadasi N, Körperich H, et al. A machine learning challenge: detection of cardiac amyloidosis based on bi-atrial and right ventricular strain and cardiac function. Diagnostics. 2022;12(11):2693. doi: 10.3390/diagnostics12112693
  • Regazzoni F, Salvador M, Dedé L, et al. A machine learning method for real-time numerical simulations of cardiac electromechanics. Comput Methods Appl Mech Eng. 2022;393:114825. doi: 10.1016/j.cma.2022.114825
  • Akoum N, Wilber D, Hindricks G, et al. MRI assessment of ablation-induced scarring in atrial fibrillation: analysis from the DECAAF study. J Cardiovasc Electrophysiol. 2015;26(5):473–480. doi: 10.1111/jce.12650
  • King JB, Azadani PN, Suksaranjit P, et al. Left atrial fibrosis and risk of cerebrovascular and cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 2017;70(11):1311–1321. doi: 10.1016/j.jacc.2017.07.758
  • Parwani AS, Morris DA, Blaschke F, et al. Left atrial strain predicts recurrence of atrial arrhythmias after catheter ablation of persistent atrial fibrillation. Open Heart. 2017;4(1):e000572. doi: 10.1136/openhrt-2016-000572
  • Hopman L, Mulder MJ, van der Laan AM, et al. Left atrial strain is associated with arrhythmia recurrence after atrial fibrillation ablation: cardiac magnetic resonance rapid strain vs. feature tracking strain. Int J Cardiol. 2023;378:23–31. doi: 10.1016/j.ijcard.2023.02.019
  • Kurzawski J, Janion-Sadowska A, Zandecki L, et al. Global peak left atrial longitudinal strain assessed by transthoracic echocardiography is a good predictor of left atrial appendage thrombus in patients in sinus rhythm with heart failure and very low ejection fraction - an observational study. Cardiovasc Ultrasoun. 2020;18(1):7. doi: 10.1186/s12947-020-00188-0
  • Brambatti M, Connolly SJ, Gold MR, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014;129(21):2094–2099. doi: 10.1161/CIRCULATIONAHA.113.007825
  • Tandon K, Tirschwell D, Longstreth WT Jr., et al. Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology. 2019;93(4):e381–e387. doi: 10.1212/WNL.0000000000007827
  • Kühnlein P, Mahnkopf C, Majersik JJ, et al. Atrial fibrosis in embolic stroke of undetermined source: a multicenter study. Eur J Neurol. 2021;28(11):3634–3639. doi: 10.1111/ene.15022
  • Bifulco SF, Scott GD, Sarairah S, et al. Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate. Elife. 2021;10:e64213. doi: 10.7554/eLife.64213
  • Miyauchi S, Tokuyama T, Uotani Y, et al. Association between left atrial appendage fibrosis and thrombus formation: a histological approach. J Cardiovasc Electrophysiol. 2022;33(4):677–687. doi: 10.1111/jce.15384
  • Potpara TS, Lip GYH, Blomstrom-Lundqvist C, et al. The 4S-AF scheme (stroke risk; symptoms; severity of burden; substrate): a novel approach to in-depth characterization (rather than classification) of atrial fibrillation. Thromb Haemost. 2021;121(3):270–278. doi: 10.1055/s-0040-1716408

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.