Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 52, 2017 - Issue 5
146
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Oxidation behaviour of Fe–40 at.-% Al intermetallics with Li or Cu additions at high temperature

, &
Pages 365-372 | Received 24 Oct 2016, Accepted 17 Feb 2017, Published online: 09 Mar 2017

References

  • Judkings Roddie R, Rao Udaya S. Fossil energy applications of intermetallic alloys. Intermetallics. 2000;8(9–11):1347–1354.
  • Elliott P. Choose materials for high-temperature environments. Chem Eng Prog. 2001;97(2):75–81.
  • Tewari R, Sarkar NK, Harish D, et al. Chapter 9 – intermetallics and alloys for high temperature applications. In: Tyagi AK, Banerjee S, editors. Materials under extreme conditions. Amsterdam: Elsevier; 2017. p. 293–335.
  • Barraza-Fierro JI, Espinosa MA, Hernadez-Hernandez M, et al. Effect of Li and Cu addition on corrosion of Fe–40at.% Al intermetallics in molten LiCl–KCl eutectic salt. Corros Sci. 2012;59:119–126. doi: 10.1016/j.corsci.2012.02.020
  • Barraza-Fierro JI, Espinosa-Medina MA, Castaneda H. Transmission line modeling applied to hot corrosion of Fe–40 at.-%Al in molten LiCl–KCl. Metall Mater Trans B. 2015;46;2593–2608.
  • Materials Science and Technology. Corrosion and environmental degradation Vol. II, 507; 2000, Weinheim, Germany: WILEY-VCH.
  • Kreiss K, Mroz MM, Zhen B, et al. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant. Occup Environ Med. 1997;54(8):605–612. doi: 10.1136/oem.54.8.605
  • Pettersson R, Liu L, Sund J. Cyclic oxidation performance of silicon-alloyed stainless steels in dry and moist air. Corros Eng Sci Technol. 2005;40(3):211–216. doi: 10.1179/174327805X66254
  • Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment – solubility measurement of oxides in molten chlorides. Corros Sci. 2002;44:247–263. doi: 10.1016/S0010-938X(01)00059-2
  • Podgornik B, Žužek B, Kafexhiu F, et al. Effect of Si content on wear performance of hot work tool steel. Tribol Lett. 2016;63(1):1–10. doi: 10.1007/s11249-016-0695-6
  • Novák P, Zelinková M, Šerák J, et al. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19(9):1306–1312. doi: 10.1016/j.intermet.2011.04.011
  • Romo L, Gonzalez-Rodriguez JG, Porcayo-Calderon J, et al. A study on the effect of Co, Cr and Ti on the corrosion of FE40AL intermetallic in molten NaCl–KCl mixture. Intermetallics. 2015;67:156–165. doi: 10.1016/j.intermet.2015.08.002
  • Stoloff NS. Iron aluminides: present status and future prospects. Mater Sci Eng A. 1998, 258:1–14. doi: 10.1016/S0921-5093(98)00909-5
  • Rosas G, Esparza R, Bedolla-Jacuinde A, et al. Room temperature mechanical properties of Fe3Al intermetallic alloys with Li and Ni additions. J Mater Eng Perform. 2009;18:57–61. doi: 10.1007/s11665-008-9254-0
  • Salazar M, Albiter A, Rosas G, et al. Structural and mechanical properties of the AlFe intermetallic alloy with Li, Ce and Ni additions. Mater Sci Eng A. 2003;351:154–159. doi: 10.1016/S0921-5093(02)00825-0
  • Rosas G, Esparza R, Bedolla A, et al. Tensile strength and ductility of Al-MT (MT = Fe, Ni) intermetallic alloys. Mater Manuf Process. 2007;22(3):305–309. doi: 10.1080/10426910701190204
  • Deevi CS, Sikka VK. Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics. 1996;4(5):357–375.
  • June M, Sawyer JW. Iron aluminide hot gas filter development. Proc. Adv. Coal-based Power and Environmental Systems; 1998; US Department of Energy.
  • Tortorelli PF, Lara-Curzio E, MacKamey CG, et al. Evaluation of iron aluminides for hot gas filter applications. Proc. Adv. Coal-Based Power and Environmental Systems, 98, 1998; US Department of Energy.
  • PalDey S, Deevi SC. Cathodic arc deposited FeAl coatings: properties and oxidation characteristics. Mater Sci Eng A. 2003;355:208–215. doi: 10.1016/S0921-5093(03)00076-5
  • Villagomez-Galindo M, Carbajal-De la Torre G, Romo-Castañeda JC, et al. Casting Fe–Al-based intermetallics alloyed with Li and Ag. J Mater Res. 2016;31(16):2473–2481. doi: 10.1557/jmr.2016.249
  • Espinosa-Medina MA, Casales M, Martinez-Villafañe A, et al. Oxidation Behavior of Atomized Fe40Al Intermetallics Doped with Boron and Reinforced with Alumina Fibers. J Mater Eng Perform. 2000;9(6):638–642. doi: 10.1361/105994900770345494
  • Grabke HJ. Oxidation of NiAl and FeAl. Intermetallics. 1999;7:1153–1158. doi: 10.1016/S0966-9795(99)00037-0
  • Muñoz-Morris MA, Garcia Oca C, Morris DG. An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic. Acta Mater. 2002;50(11):2825–2836. doi: 10.1016/S1359-6454(02)00101-5
  • Pint BA, Leibowitz J, Devan JH. The effect of an oxide dispersion on the critical Al Content in Fe–Al alloys. Oxid Met. 1999;51(1):181–197.
  • Tomaszewicz P, Wallwork GR. Iron-aluminum alloys: A review of their oxidation behaviour. Rev High Temp Mater. 1978;4:75–105.
  • Tomaszewicz P, Wallwork GR. Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys. Oxid Met. 1983;19(5–6):165–185. doi: 10.1007/BF00666643
  • Tortorelli PF, Natesan K. Critical factors affecting the high-temperature corrosion performance of iron aluminides. Mat Sci Eng A. 1998;258:115–125. doi: 10.1016/S0921-5093(98)00924-1
  • Xu CH, Gao W, Li S. Oxidation behaviour of FeAl intermetallics – the effect of Y on the scale spallation resistance. Corros Sci. 2001;43(4):671–688. doi: 10.1016/S0010-938X(00)00104-9
  • Romo Castaneda JC. Characterization of one FeAl alloy. Mexico: National Autonomous University of Mexico; 2005.
  • Salinas G, Gonzalez-Rodriguez JG, Porcayo-Calderon J, et al. Inter J Corros. 2012;2012:7. doi: 10.1155/2012/185842
  • Natesan K. FMP-92 1. Proc. 6th Annual Conf. on Fossil Energy Materials, 271, 1992; Oak Ridge National Laboratory.
  • Tomaszewicz P, Wallwork GR. The Oxidation of Fe-Al Alloys Containing Chromium, Nickel, or Manganese. Corrosion. 1984;40(4):152–157. doi: 10.5006/1.3581931
  • Rybicki GC, Smialek JL. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr. Oxid Met. 1989;31(3–4):275–304. doi: 10.1007/BF00846690
  • Rommerskirchen I, Eltester B, Grabke HJ. Oxidation of β-FeAl and Fe-Al alloys. Mater Corros. 1996;47(11):646–649. doi: 10.1002/maco.19960471109
  • K. Prasanna MN, Khanna AS, Chandra R, et al. Effect of θ-alumina formation on the growth kinetics of alumina-forming superalloys. Oxid Met. 1996;46(5–6):465–480. doi: 10.1007/BF01048641
  • Renuschet D, Veal BW, Natesan K, et al., In: Shores DA, editor. Fundamental aspects of high temperature corrosion. Pennington, NJ: The Electrochemical Society; 1997. p. 62–74.
  • DeVan JH, Tortorelli PF. The oxidation-sulfidation behavior of iron alloys containing 16–40 at% aluminum. Corros Sci. 1993;35:1065–1071. doi: 10.1016/0010-938X(93)90325-B
  • Tortorelli PF, DeVan JH. Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments. Mater Sci Eng A. 1992. 153(1–2), 573–577. doi: 10.1016/0921-5093(92)90253-W
  • Wood GC. The oxidation of iron-chromium alloys and stainless steels at high temperatures. Corros Sci. 1962;2(3), 173–196. doi: 10.1016/0010-938X(62)90019-7
  • Pujilaksono B, Jonsson T, Halvarsson M, et al. Paralinear oxidation of chromium in O2 + H2O environment at 600–700°C. Oxid Met. 2008;70(3–4):163–188. doi: 10.1007/s11085-008-9114-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.